Independence of random variables

Def let X be a riv. The smallest σ-algebra that makes X measurable is

$$
\sigma(x):=\{\underbrace{x^{-1}(B)}_{\left\{x^{\prime \prime} \in B\right\}}: B \in B\}=\sigma(\{x \leq x\}: x \in \mathbb{R})
$$

It is called the σ-algebra generated $b x$

Def Random variables x_{1}, x_{2}, \ldots are independent if $\sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \ldots$ are independent

$$
\binom{\{X \leq x\}=x^{-1}(-\infty, x]}{\text { and }(-\infty, x] \text { generate } B}
$$ HL?

$$
\mathbb{1}
$$

events $\left\{x_{1} \in B_{1}\right\},\left\{x_{2} \in B_{2}\right\}, \ldots$ are independent $\forall B_{1} \in B$

$$
\mathbb{P}\left\{x_{i} \in B_{i} \forall i \in I\right\}=\prod_{i \in I} \mathbb{P}\left\{x_{i} \in B_{i}\right\} \quad \forall \text { finite } I \subset N
$$

MM R.V's X_{1}, X_{2}, \ldots are independent \Leftrightarrow

$$
\mathbb{P}\left\{x_{i} \leq x_{i} \forall i \in I\right\}=\prod_{i \in I} \mathbb{R}\left\{x_{i} \leq x_{i}\right\} \quad \forall I \subset \mathbb{N}, \forall x_{i} \in \mathbb{R}
$$

Proof \Leftrightarrow by def
\Leftrightarrow Families $A_{i}:=\left\{\left\{x_{i} \leq x\right\}: x \in \mathbb{R}\right\}$ are independent A_{y} assumption and are π-systems $\|$ The $p .36$
σ-algebras $\sigma\left(A_{i}\right)=\left\{\left\{x_{i} \in B\right\}: B \in \mathbb{R}\right\}$ are independent.
Prop $X_{1}, \ldots x_{n}$ are independent $\Rightarrow g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)$ are independent \forall measurable functions $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{align*}
\left\lceil\forall B_{i} \in B:\right. & \mathbb{P}\left\{g_{i}\left(x_{i}\right) \in B_{i} \quad \forall i \in I\right\}=\mathbb{P}\{x_{i} \in \underbrace{g_{i}^{-1}\left(B_{i}\right)}_{B B} \forall i \in I\}=\prod_{i \in I} P\left\{x_{i} \in g_{i}^{-1}\left(B_{i}\right)\right\} \\
= & \prod_{i \in I} P\left\{g\left(x_{i}\right) \in B_{i}\right\} . \quad D
\end{align*}
$$

JOINT DISTRIBUTIONS

- Consider random variables x_{1}, \ldots, x_{n}, possibly dependent Convenient to consider as random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ taking values in \mathbb{R}^{n}
- Similarly to the $H D$ case, the distribution ("law") of X is

$$
\mathscr{L}_{x}(B)=\mathbb{P}\{x \in B\}, \quad B \in B^{n}
$$

a prob. measure on $\left(\mathbb{R}^{n}, B^{n}\right)$.
\mathscr{L}_{x} is called the joint distribution of X_{1}, \ldots, x_{n}, as opposed to $\mathcal{L}_{x_{i}}=$ "marginal distribution" of each x_{i}
$\stackrel{\operatorname{Prp}}{ } X_{1}, \ldots, X_{n}$ are independent $\Leftrightarrow \mathcal{L}_{x}=\mathcal{L}_{x_{1}} \times \ldots \times \mathcal{L}_{x_{n}}$

For $n=2$
\Leftrightarrow Let $B=B_{1} \times B_{2}$ where $B_{i} \in B$. Then

$$
\begin{aligned}
\mathscr{L}_{x}(B) & =P\left\{\left(x_{1}, x_{2}\right) \in B_{1} \times B_{2}\right\}=P\left\{x_{1} \in B_{1}, x_{2} \in B_{2}\right\} \\
& =P\left(x_{1} \in B_{1}\right\} \cdot P\left\{x_{2} \in B_{2}\right\}=\mathscr{L}_{x_{1}}\left(B_{1}\right) \cdot \mathscr{L}_{x_{2}}\left(B_{2}\right) .
\end{aligned}
$$

$\Rightarrow \mathcal{L}_{x}$ agrees with $\mathscr{L}_{x_{1}} \times \mathscr{L}_{x_{2}}$ on $\underbrace{\text { product sets, in }}_{\pi \text {-system }} B^{2}$

$$
\begin{aligned}
& \left(\Leftrightarrow \mathbb{P}\left\{X_{1} \leq x_{1}, X_{2} \leq x_{2}\right\}=\mathbb{P}\left\{\left(x_{1}, x_{2}\right) \in\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right]\right\}\right. \\
& \\
& =\mathcal{L}_{x}\left(\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right]\right) \stackrel{\operatorname{assm}}{=} \mathscr{L}_{x_{1}}\left(-\infty, x_{1}\right] \cdot \mathscr{L}_{x_{2}}\left(-\infty, x_{2}\right]=P\left\{x_{1} \leq x_{1}\right) \cdot P\left\{X_{1} \leq x_{2}\right\} \\
& \text { criterion } \\
& X_{1} \mathbb{\Perp} x_{2} .
\end{aligned}
$$

Def Joint CDF of X_{1}, \ldots, X_{n} is $F_{x}\left(x_{1}, \ldots, x_{n}\right):=R\left\{X_{1} \leqslant x_{1}\right\} \ldots P\left\{X_{n} \leqslant x_{n}\right\}$ Criterion P. $37 \Rightarrow$
Cor X_{1}, \ldots, x_{n} are independent $\Leftrightarrow F_{x}\left(x_{2}, \ldots, x_{n}\right)=F_{x_{1}}\left(x_{1}\right) \cdots F_{x_{n}}\left(x_{n}\right) \quad \forall x_{i} \in R$

Expectation: Similarly to 1-D case:

$$
\mathbb{E} g(x)=\int_{\mathbb{R}^{n}} g d \mathcal{L}_{x} \text {, ie. } \mathbb{E} g\left(x_{1}, \ldots, x_{n}\right)=\int_{\mathbb{R}^{n}} g\left(x_{1}, \ldots, x_{n}\right) d \mathcal{L}_{x}\left(x_{1}, \ldots, x_{n}\right)
$$

TuM X_{1}, \ldots, X_{n} are independent $\Rightarrow \mathbb{E}\left(X_{1} \ldots X_{n}\right)=\left(\mathbb{E} X_{1}\right) \cdots\left(\mathbb{E} X_{n}\right)$

For $n=2: \quad \mathscr{L}_{x_{1}} \times \mathcal{L}_{x_{2}}(p .38)$

$$
\mathbb{E}\left[x_{1} x_{2}\right]=\int_{\mathbb{R}^{2}} x_{1} x_{2} d \mathscr{L}_{x}^{\prime \prime} \overline{\overline{F u b i n i}}\left(\int_{R} x_{1} d \mathscr{L}_{x_{1}}\right)\left(\int_{R} x_{2} d \mathscr{L}_{x_{2}}\right)=\left(\mathbb{E} X_{1}\right)\left(\mathbb{E} X_{2}\right) .
$$

Remarks (a) " \Leftarrow " does not hold, ie. if $x_{1}=x_{2}: \mathbb{E} x^{2}=(\mathbb{E} x)^{2}$ would mean hat $\operatorname{Var}(x)=0$.
(b) If x_{i} are independent, then so are $g_{i}\left(x_{i}\right) \forall$ mile $g i(p .37)$

$$
\begin{equation*}
\Rightarrow \mathbb{E}\left[g_{1}\left(x_{1}\right) \cdots g_{n}\left(x_{n}\right)\right]=\left(\mathbb{E} g_{1}\left(x_{1}\right)\right) \cdots\left(\mathbb{E} g_{n}\left(x_{n}\right)\right) \quad \forall \text { mile } g_{i} \tag{*}
\end{equation*}
$$

(c) $(*) \Rightarrow x_{1}, \ldots, x_{n}$ are independent

Choose $g_{i}(x)=1\left\{x \leqslant x_{i}\right\}$
$\Rightarrow(*)$ becomes $\mathbb{P}\left\{x_{1} \leq x_{1}, \ldots, x_{n} \leq x_{n}\right\}=\mathbb{P}\left\{x_{1} \leq x_{1}\right\} \ldots \mathbb{P}\left\{x_{n} \leq x_{n}\right\}$
$\Rightarrow X_{1}, \ldots X_{n}$ are independent ($p .38$)
Cor X_{1}, \ldots, X_{n} are independent \Rightarrow

$$
\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)
$$

Proof W.L.O.G. EX $X_{i}=0$ (subtracting $E X_{i}$ does not affect the variance)

$$
\begin{aligned}
& \text { Ex: } X \sim \operatorname{Binom}(n, p)=\# \text { successes in } n \text { independent trials, }
\end{aligned}
$$ where each trial is a success with probability $=P$.

$$
\begin{gathered}
X=\sum_{i=1}^{n} X_{i}, \quad X_{i} \sim \operatorname{Ber}(p) \text { id. } \Rightarrow \mathbb{E} X=n p, \operatorname{Var}(x)=n p(1-p) \\
-40-
\end{gathered}
$$

