Homework 2
Probability: a Graduate Course

1. Get me out of Wyoming

Wyoming is (approximately) an $R \times R$ square where $R \approx 313$ miles. Choose a point P in Wyoming uniformly at random. Compute the expected distance from P to the closest point on Wyoming's border.

2. Absolute continuity: Joint vs individual

Find two absolutely continuous random variables X and Y that are not jointly absolutely continuous.

3. Finite expectation, infinite variance?

Does there exist a random variable X satisfying the following three properties:
(i) $X \geq 0$ almost surely;
(ii) $\mathbb{E} X=1$;
(iii) $\operatorname{Var}(X)=\infty$?

4. Jensen's inequality is usually strict

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly convex function. Let X be a random variable such that $\mathbb{E}|X|<\infty$ and $\mathbb{E}|\varphi(X)| \leq \infty$. Show that

$$
\varphi(\mathbb{E} X)=\mathbb{E}(\varphi(X)) \quad \text { implies } \quad X=\mathbb{E} X \text { a.s. }
$$

5. AN ALGORITHM TO COMPUTE PAIRWISE INDEPENDENT RANDOM VARIABLES

Let $p \geq 3$ be a prime. Let X and Y be independent random variables that are uniformly distributed on $\{0, \ldots, p-1\}$. Define

$$
Z_{n}:=(X+n Y) \quad \bmod p, \quad n=0, \ldots, p-1
$$

Show that the random variables Z_{n} are pairwise independent, but not jointly independent.

6. Chebyshev's inequality is optimal... Is it?

(a) For any given $\mu \in \mathbb{R}, \sigma>0, k>0$, show that there exists a random variable X with mean μ and variance σ^{2} and for which Chebyshev's inequality becomes an equality:

$$
\mathbb{P}\{|X-\mu| \geq k \sigma\}=\frac{1}{k^{2}}
$$

(b) Show that for any random variable X with mean μ and variance σ^{2}, one has

$$
\mathbb{P}\{|X-\mu| \geq k \sigma\}=o\left(\frac{1}{k^{2}}\right) \quad \text { as } k \rightarrow \infty
$$

Why do parts (a) and (b) not contradict each other?

7. Pairwise independence

By definition, events E, F, G are independent if all of the following four equations hold:

$$
\begin{gathered}
\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F), \\
\mathbb{P}(E \cap G)=\mathbb{P}(E) \mathbb{P}(G), \\
\mathbb{P}(F \cap F)=\mathbb{P}(E) \mathbb{P}(F), \\
\mathbb{P}(E \cap F \cap G)=\mathbb{P}(E) \mathbb{P}(F) \mathbb{P}(G) .
\end{gathered}
$$

We gave an example showing that pairwise independence does not necessarily implies independence: it may happen that the first three equations above hold while the last (fourth) equation fails. Can it happen that the last three equations hold while the first equation fails?
(I have not thought about this problem before, and am curious to know the answer.)

8. Probability of divisibility

Two numbers X and Y are chosen in $\{1, \ldots, n\}$ randomly, independently and uniformly. We are interested in $p(n)=\mathbb{P}\{X$ divides $Y\}$. Find the asymptotic behavior of $p(n)$ as $n \rightarrow \infty$.

9. Coalescence

A total of n bar magnets are placed end to end in a line with random independent orientations. Adjacent like poles repel, ends with opposite polarities join to form blocks. Find the expected number of blocks of joint magnets.
10.

Suppose that n points are chosen on the (circumference of a) circle randomly, independently and uniformly. What is the probability that all points lie in some semicircle, like in the figure below?

