
Homework 3
Probability: a Graduate Course

1. Self-normalized sums

Let X1, . . . , Xn be identically distributed random variables that take only positive
values. Consider the partial sums

Sm := X1 + X2 + . . . + Xm.

(a) Assume that the random variables Xi are independent. Show that

E[Sm/Sn] = m/n for all m ≤ n.

(b) Show by example that without independence assumption, the result of part (a)
may fail.

2. Characterization of independence

Suppose the joint density f(x1, . . . , xn) of random variables X1, . . . , Xn can be factored
as

f(x1, . . . , xn) = f1(x1) · · · fn(xn)
for some measurable functions fi : R → [0, ∞). Prove that X1, . . . , Xn are independent.
(Note that the functions fi are not assumed to be probability densities.)

3. Binomial coefficients, simplified

Prove that the partial sums of binomial coefficients(
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for integers 1 ≤ m ≤ n.
Hint: To prove the upper bound, multiply both sides by the quantity (m/n)m, replace
this quantity by (m/n)k in the left side, and use the binomial theorem. To prove the
lower bound, use the definition of the binomial coefficient to express it as a product of
m fractions; check that each fraction is lower bounded by n/m.
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4. Stochastic dominance

We say that random variable X stochastically dominates random variable Y , denoted
X ⪰ Y , if

P {X ≥ t} ≥ P {Y ≥ t} for all t ∈ R. (1)
Show that X ⪰ Y if and only if

E f(X) ≥ E f(Y ) for all nondecreasing measurable functions f : R → R. (2)

Hint for the direction (1) ⇒ (2): First prove this for f(x) = x and for nonnegative
random variables X and Y . Extend this for arbitrary random variables by decomposing
into positive and negative part. Finally, note that X ⪰ Y implies f(X) ⪰ f(Y ).

5. Small world

Consider an Erdös-Rényi random graph Gn ∼ G(n, pn). Show that if 2
√

ln(n)/n <

pn < 0.99 then the diameter1 of G equals 2 with probability that converges to 1 as
n → ∞.

6. Group testing

Imagine we need to test n people for a rare disease, which affects every person in-
dependently with probability p. Instead of testing everyone individually, we can mix
the samples obtained from any group of k people and test the mix. Such test will be
positive if and only if at least one person in that group is sick.
Describe a procedure that allows us to determine the health status of each of the n
people by using only Cn

√
p tests on average, and by testing each person at most twice.2

Hint: test a mix of k samples. If positive, test each of these k people individually.
Move on to the next group of k people. Compute the expected total number of tests.
Optimize in k.

7. Critical random graphs may have isolated vertices

(a) Let X be a nonnegative random variable. Prove that

P {X > 0} ≥ (EX)2

E[X2] ,

as long as the denominator is nonzero.

1The distance between a pair of vertices u, v is defined as the smallest number of edges of a path
that connects u and v. The diameter of G is defined as the largest distance between a pair of vertices.

2Here C is an absolute constant of your choice. For example, the solution is acceptable if you prove
the conclusion with C = 100. I think the optimal constant is C = 2.
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(b) Show that an Erdös-Rényi random graph Gn ∼ G(n, pn) with pn = ln(n)/n satisfies
lim inf

n→∞
P {G has an isolated vertex} > 0.

8. Extremal variance

(a) Prove that any random variable X that takes values in the interval [0, 1] satisfies

Var(X) ≤ 1
4 .

(b) Prove that if an equality holds above, then X must have Bernoulli distribution
with parameter 1/2.
Hint for part (a): note that X(1 − X) ≥ 0 and take expected value on both sides.

9. Order statistic

Let X1, . . . , Xn be independent random variables that are uniformly distributed in
[0, 1]. Let X(k) denote a k-th smallest among them. Show that

EX(k) = k

n + 1 .

10. Cauchy distribution

Let X and Y be independent N(0, 1) random variables. Prove that E[X/Y ] does not
exist.
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