Probability: a Graduate Course

1. Self-normalized sums

Let X_{1}, \ldots, X_{n} be identically distributed random variables that take only positive values. Consider the partial sums

$$
S_{m}:=X_{1}+X_{2}+\ldots+X_{m}
$$

(a) Assume that the random variables X_{i} are independent. Show that

$$
\mathbb{E}\left[S_{m} / S_{n}\right]=m / n \quad \text { for all } m \leq n
$$

(b) Show by example that without independence assumption, the result of part (a) may fail.

2. Characterization of independence

Suppose the joint density $f\left(x_{1}, \ldots, x_{n}\right)$ of random variables X_{1}, \ldots, X_{n} can be factored as

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)
$$

for some measurable functions $f_{i}: \mathbb{R} \rightarrow[0, \infty)$. Prove that X_{1}, \ldots, X_{n} are independent. (Note that the functions f_{i} are not assumed to be probability densities.)

3. Binomial coefficients, simplified

Prove that the partial sums of binomial coefficients

$$
\binom{n}{\leq m}:=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{m}
$$

satisfy

$$
\left(\frac{n}{m}\right)^{m} \leq\binom{ n}{m} \leq\binom{ n}{\leq m} \leq\left(\frac{e n}{m}\right)^{m}
$$

for integers $1 \leq m \leq n$.
Hint: To prove the upper bound, multiply both sides by the quantity $(\mathrm{m} / n)^{m}$, replace this quantity by $(m / n)^{k}$ in the left side, and use the binomial theorem. To prove the lower bound, use the definition of the binomial coefficient to express it as a product of m fractions; check that each fraction is lower bounded by n / m.

4. Stochastic dominance

We say that random variable X stochastically dominates random variable Y, denoted $X \succeq Y$, if

$$
\begin{equation*}
\mathbb{P}\{X \geq t\} \geq \mathbb{P}\{Y \geq t\} \quad \text { for all } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Show that $X \succeq Y$ if and only if

$$
\begin{equation*}
\mathbb{E} f(X) \geq \mathbb{E} f(Y) \quad \text { for all nondecreasing measurable functions } f: \mathbb{R} \rightarrow \mathbb{R} \tag{2}
\end{equation*}
$$

Hint for the direction $(1) \Rightarrow(2)$: First prove this for $f(x)=x$ and for nonnegative random variables X and Y. Extend this for arbitrary random variables by decomposing into positive and negative part. Finally, note that $X \succeq Y$ implies $f(X) \succeq f(Y)$.

5. Small world

Consider an Erdös-Rényi random graph $G_{n} \sim G\left(n, p_{n}\right)$. Show that if $2 \sqrt{\ln (n) / n}<$ $p_{n}<0.99$ then the diameter ${ }^{1}$ of G equals 2 with probability that converges to 1 as $n \rightarrow \infty$.

6. Group testing

Imagine we need to test n people for a rare disease, which affects every person independently with probability p. Instead of testing everyone individually, we can mix the samples obtained from any group of k people and test the mix. Such test will be positive if and only if at least one person in that group is sick.
Describe a procedure that allows us to determine the health status of each of the n people by using only $C n \sqrt{p}$ tests on average, and by testing each person at most twice. ${ }^{2}$
Hint: test a mix of k samples. If positive, test each of these k people individually. Move on to the next group of k people. Compute the expected total number of tests. Optimize in k.

7. Critical random graphs may have isolated vertices

(a) Let X be a nonnegative random variable. Prove that

$$
\mathbb{P}\{X>0\} \geq \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

as long as the denominator is nonzero.

[^0](b) Show that an Erdös-Rényi random graph $G_{n} \sim G\left(n, p_{n}\right)$ with $p_{n}=\ln (n) / n$ satisfies
$$
\liminf _{n \rightarrow \infty} \mathbb{P}\{G \text { has an isolated vertex }\}>0
$$

8. Extremal variance

(a) Prove that any random variable X that takes values in the interval $[0,1]$ satisfies

$$
\operatorname{Var}(X) \leq \frac{1}{4}
$$

(b) Prove that if an equality holds above, then X must have Bernoulli distribution with parameter $1 / 2$.
Hint for part (a): note that $X(1-X) \geq 0$ and take expected value on both sides.

9. Order statistic

Let X_{1}, \ldots, X_{n} be independent random variables that are uniformly distributed in $[0,1]$. Let $X_{(k)}$ denote a k-th smallest among them. Show that

$$
\mathbb{E} X_{(k)}=\frac{k}{n+1}
$$

10. Cauchy distribution

Let X and Y be independent $N(0,1)$ random variables. Prove that $\mathbb{E}[X / Y]$ does not exist.

[^0]: ${ }^{1}$ The distance between a pair of vertices u, v is defined as the smallest number of edges of a path that connects u and v. The diameter of G is defined as the largest distance between a pair of vertices.
 ${ }^{2}$ Here C is an absolute constant of your choice. For example, the solution is acceptable if you prove the conclusion with $C=100$. I think the optimal constant is $C=2$.

