Probability: a Graduate Course

1. Total variation metric

The total variation distance between the distributions of random variables X and Y is defined as

$$
d_{\mathrm{TV}}(X, Y):=\sup _{B \in \mathcal{B}}|\mathbb{P}\{X \in B\}-\mathbb{P}\{Y \in B\}|
$$

where the supremum is over all Borel subsets $B \subset \mathbb{R}$.
(a). Show that $d_{\mathrm{TV}}(X, Y)$ is indeed a metric on the set of distributions (i.e. probability measures on the measurable space $(\mathbb{R}, \mathcal{B})$).
(b). Suppose X and Y are integer-valued random variables. Prove that

$$
d_{\mathrm{TV}}(X, Y)=\frac{1}{2} \sum_{k \in \mathbb{Z}}|\mathbb{P}\{X=k\}-\mathbb{P}\{Y=k\}|
$$

2. Convergence in probability is metrizable

(a). Show that

$$
d(X, Y):=\mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]
$$

defines a metric on the set of random variables (more formally, on the set of equivalence classes defined by the equivalence relation $X=Y$ a.s.)
(b). Prove that $d\left(X_{n}, X\right) \rightarrow 0$ if and only if $X_{n} \rightarrow X$ in probability.

3. WLLN FOR NON-IDENTICALLY DISTRIBUTED R.V.'S)

Let X_{1}, X_{2}, \ldots be independent random variables that satisfy

$$
\frac{\operatorname{Var}\left(X_{i}\right)}{i} \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

Let $S_{n}:=X_{1}+\cdots+X_{n}$. Prove that

$$
\frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{n} \rightarrow 0 \quad \text { in probability. }
$$

4. When do Bernoulli Random variables converge?

Let X_{1}, X_{2}, \ldots be independent $\operatorname{Ber}\left(p_{n}\right)$ random variables.
(a). Show that $X_{n} \rightarrow 0$ in probability if and only if $p_{n} \rightarrow 0$.
(b). Show that $X_{n} \rightarrow 0$ a.s. if and only if $\sum_{n} p_{n}<\infty$.

5. Convergence on discrete spaces

Let X_{1}, X_{2}, \ldots be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is a countable set and $\mathcal{F}=2^{\Omega}$ (the power set). Show that $X_{n} \rightarrow X$ in probability if and only if $X_{n} \rightarrow X$ a.s.

6. SUPPRESSION

Show that for any sequence of random variables X_{1}, X_{2}, \ldots there exists a sequence of positive real numbers c_{1}, c_{2}, \ldots such that $c_{n} X_{n} \rightarrow 0$ a.s.

7. Weak vs strong LLN

Let X_{2}, X_{3}, \ldots be independent random variables such that X_{n} takes value n with probability $1 /(2 n \ln n)$, value $-n$ with the same probability, and value 0 with the remaining probability $1-1 /(n \ln n)$. Show that this sequence obeys the weak law of large numbers but fails the strong law of large numbers, in the sense that

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow 0
$$

in probability but not a.s.

8. Keep breaking the stick

Let $X_{0}=1$ and define X_{n} inductively by choosing X_{n+1} uniformly at random from the interval $\left[0, X_{n}\right]$. Prove that

$$
\frac{\ln X_{n}}{n} \rightarrow c \quad \text { a.s. }
$$

and find the value of the constant c.

9. Failure of SLLN

Construct a sequence of independent mean zero random variables X_{1}, X_{2}, \ldots such that

$$
\frac{1}{n} \sum_{k=1}^{n} X_{k} \rightarrow \infty \text { a.s. }
$$

Why does not this example contradict the strong law of large numbers?

10. SLLN FOR THE NUMBER OF RECURRENT EVENTS

Suppose disasters occur at random times X_{i} apart from each other. Precisely, k-th disaster occur at time $T_{k}:=X_{1}+\cdots+X_{k}$ where X_{i} are i.i.d. random variables taking positive values and with finite mean μ. Let

$$
N(t):=\max \left\{n: T_{n} \leq t\right\}
$$

be the number of disasters that have occurred by time t. Prove that

$$
N(t) \rightarrow \infty \quad \text { and } \quad \frac{N(t)}{t} \rightarrow \frac{1}{\mu}
$$

almost surely as $t \rightarrow \infty$.
(Hint: check that $N(t)<n$ iff $T_{n}>t$, and $T_{N(t)} \leq t<T_{N(t)+1}$. Use the strong law of large numbers for T_{n} / n.)

