
Homework 5
Probability: a Graduate Course

1. Convergence on discrete spaces

Let X1, X2, . . . be a sequence of random variables on (Ω, F ,P) where Ω is a countable set
and F = 2Ω (the power set). For each statement below, prove or give a counterexample.

(a) Xn → X in probability if and only if Xn → X a.s.
(b) Xn → X in distribution if and only if Xn → X a.s.

2. WLLN for non-identically distributed r.v.’s

Let Sn := X1+· · ·+Xn, where X1, X2, . . . be independent random variables that satisfy
Var(Xn)

n
→ 0 as n → ∞.

(a) Prove that
Sn − E[Sn]

n
→ 0 in probability.

(b) Show that almost sure convergence in (a) may fail. Why does not this contradict
the strong law of large numbers?

Hints: (a) Show that Var(Sn/n) → 0 and apply Chebyshev’s inequality. (b) Let Xn

take value n with probability 1/(2n ln n), value −n with the same probability, and value
0 with the remaining probability.

3. Keep breaking the stick

Let X0 = 1 and define Xn inductively by choosing Xn+1 uniformly at random from the
interval [0, Xn]. Prove that

ln Xn

n
→ c a.s.

and find the value of the constant c.
Hint: express Xn as a product of iid variables, take logarithm, and use the strong law
of large numbers.

4. Failure of LLN

Construct a sequence of independent mean zero random variables X1, X2, . . . such that
1
n

n∑
i=1

Xi → ∞ a.s.

Why does not this example contradict the law of large numbers?
Hint: revisit the St. Petersburg paradox from Homework 4, Exercise 7.
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5. SLLN for the number of recurring events

Suppose disasters occur at random times Xi apart from each other. Precisely, n th
disaster occurs at time Tn := X1 + · · ·+Xn, where Xi are i.i.d. random variables taking
positive values and with finite mean µ. Let

N(t) := max{n : Tn ≤ t}

be the number of disasters that have occurred by time t. Prove that

N(t) → ∞ and N(t)
t

→ 1
µ

almost surely as t → ∞.
Hint: check that N(t) < n iff Tn > t, and TN(t) ≤ t < TN(t)+1. Use the strong law of
large numbers for Tn/n.

6. Kolmogorov’s two series theorem is not reversible

Find a sequence of independent mean zero random variables (Xn) for which ∑∞
n=1 Xn

converges almost surely, yet ∑∞
n=1 Var(Xn) = ∞.

Hint: make Xn take large values with tiny probability.

7. Levy’s random series theorem

Let (Xn) be a sequence of independent random variables. Prove that the series ∑∞
n=1 Xn

converges in probability if and only if it converges almost surely.
Hint: modify the proof of Kolmogorov’s two series theorem, using Etemadi’s maximal
inequality.

8. Convergence of normal distributions

Let µn, µ ∈ R and σn, σ ≥ 0. Let Xn ∼ N(µn, σ2
n) and X ∼ N(µ, σ2). Prove that

Xn
d−→ X if and only if µn → µ and σ2

n → σ2.

9. Convergence to a constant

Let Xn be random variables and c be a constant. Prove Xn converges to c in distribution
if and only if Xn converges to c in probability.
Hint: use Portmanteau Lemma.
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10. Continuous mapping theorem

Let Xn be random variables and h : R → R be a continuous function. For each mode
of convergence – almost sure, in probability, and in distribution – prove the following
statement:

Xn → X implies h(Xn) → h(X).

Hint: For convergence in distribution, use Portmanteau Lemma. For convergence in
probability, use truncation and uniform continuity of h on an interval.

11. Convergence in distribution and convergence of means

Let Xn, X be random variables with finite means.

(a) Assume that supn EX2
n < ∞. Prove that Xn

d−→ X implies EXn → EXn.
(b) Show by example that the assumption supn EX2

n < ∞ cannot be removed in
general.

Hint: (a) Use truncation.

12. Scheffé’s lemma

Let Xn, X be random variables.

(a) (For absolutely continuous distributions) Prove that if the probability density func-
tions of Xn converge to the probability density function of X pointwise, then Xn

converges to X in distribution.
(b) (For discrete distributions) Prove that if the probability mass functions of Xn

converge to the probability mass function of X pointwise, then Xn converges to X
in distribution.

(c) (No converse) In general, convergence in distribution does not imply pointwise
convergence of probability density functions. Find an example of random variables
Xn with densities fn so that Xn

d−→ X ∼ Unif[0, 1] but fn(x) ̸→ 1 for any x ∈ [0, 1].

Hint: (a) The densities fn, f satisfy the triangle inequality |fn| + |f | − |f − fn| ≥ 0.
Apply the Fatou lemma to the function in the left hand side.
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