
Homework 5
Probability: a Graduate Course

1. Total variation metric

The total variation distance between the distributions of random variables X and Y is
defined as

dTV(X, Y ) := sup
B∈B

∣∣∣P {X ∈ B} − P {Y ∈ B}
∣∣∣

where the supremum is over all Borel subsets B ⊂ R.

(a). Show that dTV(X, Y ) is indeed a metric on the set of distributions (i.e. probability
measures on the measurable space (R, B)).

(b). Suppose X and Y are integer-valued random variables. Prove that

dTV(X, Y ) = 1
2

∑
k∈Z

∣∣∣P {X = k} − P {Y = k}
∣∣∣.

2. Convergence in probability is metrizable

(a). Show that

d(X, Y ) := E
[

|X − Y |
1 + |X − Y |

]
defines a metric on the set of random variables (more formally, on the set of equivalence
classes defined by the equivalence relation X = Y a.s.)

(b). Prove that d(Xn, X) → 0 if and only if Xn → X in probability.

3. WLLN for non-identically distributed r.v.’s)

Let X1, X2, . . . be independent random variables that satisfy
Var(Xi)

i
→ 0 as i → ∞.

Let Sn := X1 + · · · + Xn. Prove that
Sn − E[Sn]

n
→ 0 in probability.
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4. When do Bernoulli random variables converge?

Let X1, X2, . . . be independent Ber(pn) random variables.

(a). Show that Xn → 0 in probability if and only if pn → 0.

(b). Show that Xn → 0 a.s. if and only if ∑
n pn < ∞.

5. Convergence on discrete spaces

Let X1, X2, . . . be a sequence of random variables on (Ω, F ,P) where Ω is a countable
set and F = 2Ω (the power set). Show that Xn → X in probability if and only if
Xn → X a.s.

6. Suppression

Show that for any sequence of random variables X1, X2, . . . there exists a sequence of
positive real numbers c1, c2, . . . such that cnXn → 0 a.s.

7. Weak vs strong LLN

Let X2, X3, . . . be independent random variables such that Xn takes value n with
probability 1/(2n ln n), value −n with the same probability, and value 0 with the
remaining probability 1 − 1/(n ln n). Show that this sequence obeys the weak law of
large numbers but fails the strong law of large numbers, in the sense that

1
n

n∑
i=1

Xi → 0

in probability but not a.s.

8. Keep breaking the stick

Let X0 = 1 and define Xn inductively by choosing Xn+1 uniformly at random from the
interval [0, Xn]. Prove that

ln Xn

n
→ c a.s.

and find the value of the constant c.
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9. Failure of SLLN

Construct a sequence of independent mean zero random variables X1, X2, . . . such that
1
n

n∑
k=1

Xk → ∞ a.s.

Why does not this example contradict the strong law of large numbers?

10. SLLN for the number of recurrent events

Suppose disasters occur at random times Xi apart from each other. Precisely, k-th
disaster occur at time Tk := X1 + · · · + Xk where Xi are i.i.d. random variables taking
positive values and with finite mean µ. Let

N(t) := max{n : Tn ≤ t}
be the number of disasters that have occurred by time t. Prove that

N(t) → ∞ and N(t)
t

→ 1
µ

almost surely as t → ∞.
(Hint: check that N(t) < n iff Tn > t, and TN(t) ≤ t < TN(t)+1. Use the strong law of
large numbers for Tn/n.)
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