
Homework 6
Probability: a Graduate Course

1. Increasing functions are positively correlated

Let X be a random variable and f, g : R → R be nondecreasing functions. Prove that
random variables f(X) and g(X) are non-negatively correlated. Feel free to add any
reasonable integrability assumptions.
Hint: Let Y be an independent copy of X. Check that that the random variables
f(X) − f(Y ) and g(X) − g(Y ) always have the same sign. Take expectation of their
product.

2. Extreme values

Let Xi be i.i.d. random variables each having exponential distribution with mean 1,
i.e. P{Xi > x} = e−x for all x ∈ R. Consider

Mn := max
i≤n

Xi.

Show that Mn − log n converges in distribution to the random variable Y with the
standard Gubmel distribution, i.e. the random variable with cdf F (x) = exp(−e−x).
Hint: compute the cdf of Mn and take the limit.

3. Slutsky’s theorem

Consider the following statement:

if Xn → X weakly and Yn → Y weakly then Xn + Yn → X + Y weakly. (1)

(a) Find an example showing that (1) is false in general.
(b) Prove that if Y is a constant, then (1) is true.
(c) Prove that if Xn and Yn are independent, and X and Y are independent, then (1)

is true.

Hint for (b): Let Y = 0. By Portmanteau lemma, it is enough to prove that EZn → 0
where Zn := h(Xn +Yn)−h(Xn) and h is any function that is uniformly bounded along
with its derivative. Calculus should help you bound Zn when Yn is small.

4. Sums of independent Poissons

Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent. Use characteristic functions to
check that X + Y ∼ Pois(λ + µ).
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5. The rate of convergence in CLT

The nonasymptotic central limit theorem (see Lecture 21) implies that if X1, X2, . . . are
i.i.d. random variables with zero mean, unit variance, and finite absolute third moment,
and h : R → R is a function with bounded third derivative, then Sn = X1 + · · · + Xn

satisfies for each n: ∣∣∣∣∣Eh
(

Sn√
n

)
− Eh(Z)

∣∣∣∣∣ ≤ C∥h′′′∥∞ E|X1|3√
n

,

where Z ∼ N(0, 1) and C is an absolute constant. Show that, in general,
√

n cannot
be replaced by any faster growing function of n.
Hint: Let Xn be Randemacher random variables, and make h vanish on the lattice
n−1/2Z.

6. CLT has ups and downs, too

Let X1, X2, . . . be i.i.d. random variables with zero mean and unit variance. Prove
that, almost surely,

lim sup
n

Sn√
n

= +∞; lim inf
n

Sn√
n

= −∞.

Why does this not contradict the CLT?
Hint: Fix any M > 0. Combining Fatou lemma and CLT, show that lim supn

Sn√
n

> M

holds with positive probability. Then automatically upgrade the probability to 1.

7. A non-example for CLT

Let X1, X2, . . . be Rademacher random variables. Let Y1, Y2, . . . be such that Yk takes
values ±k with probability k−2/2 each and value 0 with probability 1 − k−2. Assume
all these random variables are independent, and let Zk = Xk + Yk. Show that Sn =
Z1 + · · · + Zn satisfies

ESn = 0 and Var
(

Sn√
n

)
→ 2 but Sn√

n
d→ N(0, 1).

Why does this example not contradict Lindeberg’s CLT?
Hint: use Borel-Cantelli lemma to argue that 1√

n

∑n
i=1 Yi

a.s.→ 0.

8. Lyapunov’s CLT

Check that Lindeberg’s condition (ii) in CLT (see Lecture 24) can be replaced by the
following condition:
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(ii)′ there exists δ > 0 such that

lim
n→∞

n∑
k=1

E|Xnk|2+δ = 0.

Hint: check that Lyapunov’s condition (ii)′ implies Lindeberg’s condition (ii).

9. Spherical CLT

Let X(n) = (X(n)
1 , . . . , X(n)

n ) be a random vector distributed uniformly on the Euclidean
unit sphere in Rn. Prove that the coordinates of X(n) are asymptotically normal, i.e.
for any k ∈ N we have

√
nX

(n)
k

w−→ N(0, 1) as n → ∞.

Hint: use rotation invariance to represent X as X = Z/∥Z∥2 where Z ∼ N(0, In).
Argue that ∥Z∥2/

√
n → 1 a.s.

10. Poisson visits Gauss

Consider independent random variables Xn ∼ Pois(λn). Show that if λn → ∞ then

Xn − λn√
λn

w−→ N(0, 1).

Hint: Compute the limit of the characteristic functions.

11. CLT for random sign sums

Let X1, X2, . . . be independent Rademacher random variables. Let a1, a2, . . . be a
sequence of (nonrandom) numbers. Denote mn = maxk=1,...,n a2

k and sn = ∑n
k=1 a2

k.
Show that if

mn/sn → 0 as n → ∞,

then
1

√
sn

n∑
k=1

akXk
w−→ N(0, 1).

Hint: Apply Lindeberg’s CLT.
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12. CLT with random number or terms

Let X1, X2, . . . be i.i.d. random variables with mean zero and unit variance, and let
Sn = X1 + · · · + Xn. Let Nn be a sequence of nonnegative integer-valued random
variables and an be a (nonrandom) sequence of nonnegative integers such that an → ∞
and Nn/an → 1 in probability. Show that

SNn√
an

→ N(0, 1)

weakly.
(Hint: use Kolmogorov’s maximal inequality to conclude that if Yn = SNn/

√
an and

Zn = San/
√

an, then Yn − Zn → 0 in probability.)
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