Homework 6
 Probability: a Graduate Course

1. Prokhorov's theorem

Let $\left(X_{n}\right)$ be a sequence of random variables. Prove that the following two statements are equivalent:
(i) $\left(X_{n}\right)$ is tight;
(ii) any subsequence of (X_{n}) has a weakly convergent subsequence.

2. The most predictable and most unpredictable random variables

Fix any n-point set $B \subset \mathbb{R}$, and consider all random variables X that take values in B. Let $H(X)$ denote the entropy of X.
(a) Show that $0 \leq H(X) \leq \log _{2} n$.
(b) Show that $H(X)=\log _{2} n$ if and only if X is uniformly distributed on B.
(c) Show that $H(X)=0$ if and only if X is constant, i.e. $\mathbb{P}\{X=b\}=1$ for some $b \in B$.

3. Kolmogorov's two series theorem is irreversible

Find a sequence of independent mean zero random variables $\left(X_{n}\right)$ for which $\sum_{n=1}^{\infty} X_{n}$ converges almost surely, yet $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)=\infty$.

4. LEVY'S RANDOM SERIES THEOREM

Let $\left(X_{n}\right)$ be a sequence of independent random variables. Prove that the series $\sum_{n=1}^{\infty} X_{n}$ converges in probability if and only if it converges almost surely.

Hint: modify the proof of Kolmogorov's two series theorem. Do not use Chebyshev's inequality, but do use Etemadi's maximal inequality.

5. Does Helly's selection theorem yield convergence everywhere?

Our version of Helly's selection theorem guarantees the convergence of $F_{n_{k}}$ to the limit F at all points of continuity x of F.
(i) Show by example that convergence may not hold for all $x \in \mathbb{R}$.
(ii) Show that if we drop the right continuity requirement for F, we can achieve convergence for all $x \in \mathbb{R}$.

6. When are normal Random variables tight?

Let $X_{n} \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$. Find necessary and sufficient conditions, in terms of μ_{n} and σ_{n}, for tightness of the sequence $\left(X_{n}\right)$.

7. Scheffé's Lemma

(a) (For continuous distributions) Prove that if the probability density functions of X_{n} converge to the probability density function of X pointwise, then X_{n} converges to X weakly.
(b) (For discrete distributions) Prove that if the probability mass functions of X_{n} converge to the probability mass function of X pointwise, then X_{n} converges to X weakly.
(c) (No converse) In general, weak convergence does not imply pointwise convergence of probability density functions. Find an example of random variables X_{n} with densities f_{n} so that X_{n} converge weakly to $X \sim \operatorname{Unif}[0,1]$ but $f_{n}(x)$ does not converge to 1 for any $x \in[0,1]$.

8. Extreme values

Let X_{i} be i.i.d. random variables each having exponential distribution with mean 1, i.e. $\mathbb{P}\left\{X_{i}>x\right\}=e^{-x}$ for all $x \in \mathbb{R}$. Consider

$$
M_{n}:=\max _{i \leq n} X_{i}
$$

Show that $M_{n}-\log n$ converges weakly to the random variable Y with the standard Gubmel distribution, i.e. the random variable with $\operatorname{cdf} F(x)=\exp \left(-e^{-x}\right)$.

9. Convergence to a constant

Let X_{n} be random variables and c be a constant. Prove that weak convergence of X_{n} to c is equivalent to convergence of X_{n} to c in probability.

10. Convergence together

Consider the following statement:

$$
\begin{equation*}
\text { if } X_{n} \rightarrow X \text { weakly and } Y_{n} \rightarrow Y \text { weakly then } X_{n}+Y_{n} \rightarrow X+Y \text { weakly. } \tag{1}
\end{equation*}
$$

(a) Find an example showing that (1) is false in general.
(b) Prove that if Y is a constant, then (1) is true.
(c) Prove that if X_{n} and Y_{n} are independent, and X and Y are independent, then (1) is true.

