HOMEWORK 7
PROBABILITY: A GRADUATE COURSE

1. CONDITIONAL JENSEN’S INEQUALITY

Let (€, 3, P) be a probability space, F C X be a sigma-algebra, ¢ : R — R be a convex
function, and X be a random variable satisfying E|X| < co and E|p(X)| < co. Prove
that

p (E[X|F]) < E[p(X)|F].

2. CONDITIONAL EXPECTATION IS A CONTRACTION

Check that conditional expectation is a contraction in LP. Specifically, let (£2, X, P) be
a probability space, let F C 3 be a sigma-algebra, and let p € (1,00). For a random
variable X € L? = LP(Q, X, P), denote f(X) = E[X|F]. Check that

1F(X) = FY)llr <N X =Yl for any X, Y € L.

3. CONDITIONAL CAUCHY-SCHWARZ
Show that
(E[XY|F])? < E[X?|F]-E[Y?|F]

almost surely.

4. CONDITIONING AND SECOND MOMENT

Let Y = E[X|F]. Show that if E[Y?] = E[X?] then X =Y aus.

5. PROPERTIES OF CONDITIONAL EXPECTATION

Is each statement below true or false? Prove or give a counterexample.

(a) EX = 0 implies E[X|F] =0 a.s.
(b) E[X|F] =0 a.s. implies EX = 0.
(c) E[X|Y + Z] = E[X|Y] + E[X|Z].

6. GEOMETRY OF CONDITIONAL EXPECTATION

Fix a probability space (€2, %,P). Denote by L? the space of all random variables
with finite variance on (€, 3, P), equipped with the inner product (X,Y) = E XY
Consider a random variable Y € L2, Let H C L? consist of the random variables that
are independent of Y:
H={Xel’: X 1LY},
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Let L C L? consist of all variables of the form h(Y) where h: R — R is a measurable
function:
L= {h(Y) €L?: h:R—Ris measurable} :

Is each statement below true or false? Prove or give a counterexample.

(a) H is a closed linear subspace of L.

(b) L is a closed linear subspace of L2

(c¢) H is orthogonal to L (meaning, (h,¢) =0 for any h € H and ¢ € L).
(d) H is the orthogonal complement of L.

7. NORMAL CONDITIONING PROPERTY

Extend the result from Lecture 28. Prove that if random variables X,Y7,...,Y,, are
jointly normal, then

E[X|Yi,.... Y] =a i+ +anY, +b

for some numbers ay,...,a,,b € R.

8. FILTERING

Extend the result from Lecture 28. Let X ~ N(0,1) be an unknown signal. Suppose
we observe n versions of the signal corrupted by noise:

Yi=X+W, i=1,...,n,
where W; ~ N(0, 02) are all jointly independent of X and of each other. Find the best

estimate X of the signal X as a function of observations Y; and the variances of the
noise o; — one that minimizes the mean squared error.

Hint: For n = 1, we showed in class that X = Y/(1+ o?). Here, a similar estima-
tor should work with Y replaced by the arithmetic mean of Y;, and o replaced by the
arithmetic mean o;.

9. CONDITIONAL VARIANCE

Study the law of total variance (see notes for Lecture 29). Let X and Y be random
variables with finite variance. Is each statement below true or false? Prove or give a
counterexample.

(a) Var(X) > Var(X[Y) a.s.

(b) Var(X) > E | Var(X]Y)].

10. THE LAW OF TOTAL COVARIANCE

Extend the law of total variance (see lecture notes for Lecture 28) to random vectors:
formulate and prove the corresponding law of total covariance.
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