

HOMEWORK 7
PROBABILITY: A GRADUATE COURSE

1. CONDITIONAL JENSEN'S INEQUALITY

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, $\mathcal{F} \subset \Sigma$ be a sigma-algebra, $\varphi : \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, and X be a random variable satisfying $\mathbb{E}|X| < \infty$ and $\mathbb{E}|\varphi(X)| < \infty$. Prove that

$$\varphi(\mathbb{E}[X|\mathcal{F}]) \leq \mathbb{E}[\varphi(X)|\mathcal{F}].$$

2. CONDITIONAL EXPECTATION IS A CONTRACTION

Check that conditional expectation is a contraction in L^p . Specifically, let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, let $\mathcal{F} \subset \Sigma$ be a sigma-algebra, and let $p \in (1, \infty)$. For a random variable $X \in L^p = L^p(\Omega, \Sigma, \mathbb{P})$, denote $f(X) = \mathbb{E}[X|\mathcal{F}]$. Check that

$$\|f(X) - f(Y)\|_{L^p} \leq \|X - Y\|_{L^p} \quad \text{for any } X, Y \in L^p.$$

3. CONDITIONAL CAUCHY-SCHWARZ

Show that

$$(\mathbb{E}[XY|\mathcal{F}])^2 \leq \mathbb{E}[X^2|\mathcal{F}] \cdot \mathbb{E}[Y^2|\mathcal{F}]$$

almost surely.

4. CONDITIONING AND SECOND MOMENT

Let $Y = \mathbb{E}[X|\mathcal{F}]$. Show that if $\mathbb{E}[Y^2] = \mathbb{E}[X^2]$ then $X = Y$ a.s.

5. PROPERTIES OF CONDITIONAL EXPECTATION

Is each statement below true or false? Prove or give a counterexample.

- (a) $\mathbb{E}X = 0$ implies $\mathbb{E}[X|\mathcal{F}] = 0$ a.s.
- (b) $\mathbb{E}[X|\mathcal{F}] = 0$ a.s. implies $\mathbb{E}X = 0$.
- (c) $\mathbb{E}[X|Y+Z] = \mathbb{E}[X|Y] + \mathbb{E}[X|Z]$.

6. GEOMETRY OF CONDITIONAL EXPECTATION

Fix a probability space $(\Omega, \Sigma, \mathbb{P})$. Denote by L^2 the space of all random variables with finite variance on $(\Omega, \Sigma, \mathbb{P})$, equipped with the inner product $\langle X, Y \rangle = \mathbb{E}XY$. Consider a random variable $Y \in L^2$. Let $H \subset L^2$ consist of the random variables that are independent of Y :

$$H := \{X \in L^2 : X \perp\!\!\!\perp Y\}.$$

Let $L \subset L^2$ consist of all variables of the form $h(Y)$ where $h : \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function:

$$L := \{h(Y) \in L^2 : h : \mathbb{R} \rightarrow \mathbb{R} \text{ is measurable}\}.$$

Is each statement below true or false? Prove or give a counterexample.

- (a) H is a closed linear subspace of L^2 .
- (b) L is a closed linear subspace of L^2 .
- (c) H is orthogonal to L (meaning, $\langle h, \ell \rangle = 0$ for any $h \in H$ and $\ell \in L$).
- (d) H is the orthogonal complement of L .

7. NORMAL CONDITIONING PROPERTY

Extend the result from Lecture 28. Prove that if random variables X, Y_1, \dots, Y_n are jointly normal, then

$$\mathbb{E}[X|Y_1, \dots, Y_n] = a_1 Y_1 + \dots + a_n Y_n + b$$

for some numbers $a_1, \dots, a_n, b \in \mathbb{R}$.

8. FILTERING

Extend the result from Lecture 28. Let $X \sim N(0, 1)$ be an unknown signal. Suppose we observe n versions of the signal corrupted by noise:

$$Y_i = X + W_i, \quad i = 1, \dots, n,$$

where $W_i \sim N(0, \sigma_i^2)$ are all jointly independent of X and of each other. Find the best estimate \widehat{X} of the signal X as a function of observations Y_i and the variances of the noise σ_i – one that minimizes the mean squared error.

Hint: For $n = 1$, we showed in class that $\widehat{X} = Y/(1 + \sigma^2)$. Here, a similar estimator should work with Y replaced by the arithmetic mean of Y_i , and σ replaced by the arithmetic mean σ_i .

9. CONDITIONAL VARIANCE

Study the law of total variance (see notes for Lecture 29). Let X and Y be random variables with finite variance. Is each statement below true or false? Prove or give a counterexample.

- (a) $\text{Var}(X) \geq \text{Var}(X|Y)$ a.s.
- (b) $\text{Var}(X) \geq \mathbb{E}[\text{Var}(X|Y)]$.

10. THE LAW OF TOTAL COVARIANCE

Extend the law of total variance (see lecture notes for Lecture 28) to random vectors: formulate and prove the corresponding law of total covariance.