HOMEWORK 8 PROBABILITY: A GRADUATE COURSE

1. Conditioning on the sum

Let X and Y be independent and identically distributed random variables with finite means. Show that

$$\mathbb{E}[X|X+Y] = \frac{X+Y}{2}.$$

2. Conditional Jensen's inequality

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, $\mathcal{F} \subset \Sigma$ be a sigma-algebra, $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function, and X be a random variable satisfying $\mathbb{E}|X| < \infty$ and $\mathbb{E}|\varphi(X)| < \infty$. Prove that

 $\varphi\left(\mathbb{E}[X|\mathcal{F}]\right) \leq \mathbb{E}\left[\varphi(X)|\mathcal{F}\right].$

3. Gauss meets Rademacher

Let $X \sim N(0, 1)$ and Y = |X|. Show that X|Y has the same distribution as rY where r is an independent Rademacher random variable.

4. CLT FOR RANDOM POLYNOMIALS

Let X_i be independent standard normal random variables.

- (a) Prove a limit theorem for $S_n = \sum_{i=1}^{n-1} X_i X_{i+1}$.
- (b) Prove a limit theorem for $T_n = \sum_{i,j=1}^n X_i X_j$.

5. The law of total variance

Define the conditional variance of X on the sigma-algebra \mathcal{F} as

$$\operatorname{Var}(X|\mathcal{F}) = \mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F}])^2.$$

Check that

$$\operatorname{Var}(X) = \mathbb{E}\left[\operatorname{Var}(X|\mathcal{F})\right] + \operatorname{Var}\left(\mathbb{E}[X|\mathcal{F}]\right).$$

6. CONDITIONAL EXPECTATION IS A CONTRACTION

Check that conditional expectation is a contraction in L^p . Specifically, let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, let $\mathcal{F} \subset \Sigma$ be a sigma-algebra, and let $p \in (1, \infty)$. For a random variable $X \in L^p = L^p(\Omega, \Sigma, \mathbb{P})$, denote $f(X) = \mathbb{E}[X|\mathcal{F}]$. Check that

 $||f(X) - f(Y)||_{L^p} \le ||X - Y||_{L^p}$ for any $X, Y \in L^p$.

7. Memoryless distributions

Show that the only absolutely continuous distribution that is memoryless is exponential. (Make this statement precise.)

8. CONDITIONING ON TRUNCATION

Let $X \sim \text{Exp}(\lambda)$. Find $\mathbb{E}[X|\max(X,t)]$ for any fixed number t > 0.

9. Conditional Cauchy-Schwarz inequality

Show that

$$(\mathbb{E}[XY|\mathcal{F}])^2 \le \mathbb{E}[X^2|\mathcal{F}] \cdot \mathbb{E}[Y^2|\mathcal{F}]$$

almost surely.

10. Conditioning reduces second moment

Let $Y = \mathbb{E}[X|\mathcal{F}]$. Show that if $\mathbb{E}[Y^2] = \mathbb{E}[X^2]$ then X = Y a.s.