

- Consider a simple random walk

$$S_n = X_1 + \dots + X_n \quad \text{where } X_i \sim \text{Rademacher iid.}$$

SLLN \Rightarrow

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} 0 \quad \text{as } n \rightarrow \infty.$$

- But $\text{Var}(S_n) = n$, so it makes more sense to normalize by the standard deviation of S_n , which is \sqrt{n} :

$$\frac{S_n}{\sqrt{n}} \rightarrow ?$$

- ? can't be 0 anymore, or any constant ($\text{Var}\left(\frac{S_n}{\sqrt{n}}\right) = 1\right)$.

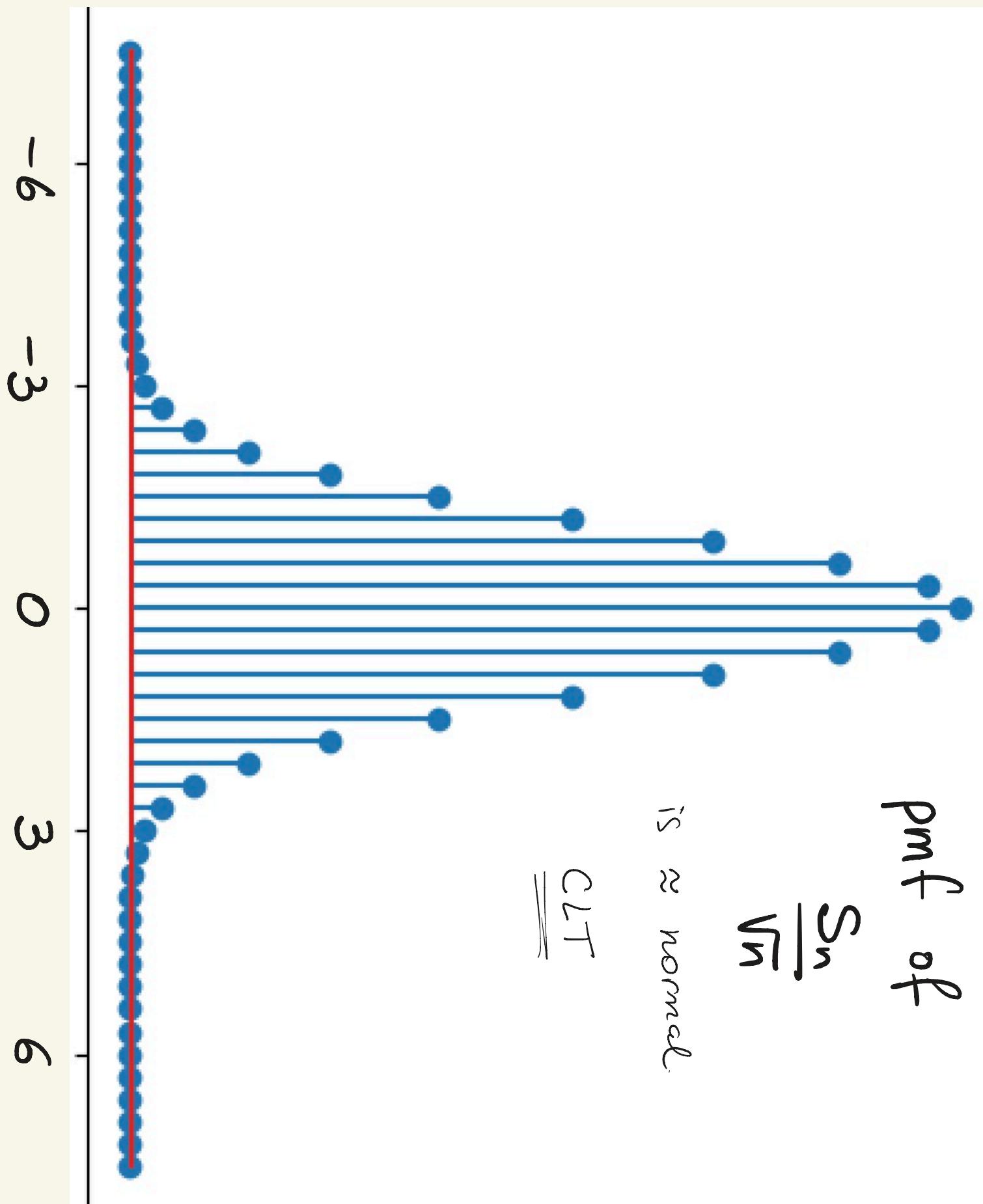
pmf of $\frac{S_n}{\sqrt{n}}$:

pmf of

$$\frac{S_n}{\sqrt{n}}$$

is \approx normal.

\equiv
CLT



A PHYSICS PROOF OF THE CLT

- pmf: $f(x, n) := P\{S_n = x\}$

- $f(x, n+1) = P\{S_{n+1} = x\} = P\{S_n = x+1, X_n = -1\} + P\{S_n = x-1, X_n = 1\}$
 $= P\{S_n = x+1\} \cdot P\{X_n = -1\} + P\{S_n = x-1\} \cdot P\{X_n = 1\}$ (independence)
 $= f(x+1, n) \cdot \frac{1}{2} + f(x-1, n) \cdot \frac{1}{2}$

- Subtract $f(x, n)$ from both sides, rearrange the terms \Rightarrow

$$f(x, n+1) - f(x, n) = \frac{f(x+1, n) - f(x, n)}{2} - \frac{f(x, n) - f(x-1, n)}{2}$$

\Downarrow Heuristically

$$\frac{\partial f}{\partial n}(x, n) \quad \longrightarrow \quad \frac{1}{2} \frac{\partial f}{\partial x}(x, n) - \frac{1}{2} \frac{\partial f}{\partial x}(x-1, n) \approx \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(x, n)$$

$$\Rightarrow \frac{\partial f}{\partial n} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}$$

$\xrightarrow{\text{Heat (a.k.a. diffusion) PDE}}$
with initial condition $f(x, 0) = \delta(x)$

- Solve: the (fundamental) solution is

$$(*) f(x, n) = \frac{1}{\sqrt{2\pi n}} \exp\left(-\frac{x^2}{2n}\right) = \text{pdf}(x) \text{ of } N(0, \sqrt{n})$$

$$\Rightarrow S_n \approx N(0, \sqrt{n}) \leftarrow \text{CLT}$$

- Remarks
 - ① A random walk models a diffusion (of 1 molecule)
 - ② To make this rigorous, what does it even mean that $S_n \rightarrow N(0, 1)$?
 Not \xrightarrow{P} or $\xrightarrow{\text{a.s.}}$: It could be on different prob.-spaces!

CONVERGENCE IN DISTRIBUTION

Def A sequence of r.v's X_1, X_2, \dots converges in distribution (a.k.a. "weakly") to a r.v. X if the cdf's satisfy

$$F_n(x) \rightarrow F(x) \quad \forall \text{ continuity point } x \text{ of } F$$

$$\Leftrightarrow P\{X_n \leq x\} \rightarrow P\{X \leq x\}. \quad \forall x \text{ such that } P\{X=x\}=0$$

Denoted $X_n \xrightarrow{d} X$.

Remarks 1. All r.v's X, X_1, X_2, \dots may be defined on different prob. spaces

— unlike in a.s. convergence and conv. in probability.

most important
mode of conv.
in prob. theory

2. Since F is bounded & monotone, the set of discontinuities is finite or countable.

Examples (a) Let X be r.v. Then $X_n := X + \frac{1}{n} \xrightarrow{d} X$

$$F_n(x) = P\{X + \frac{1}{n} \leq x\} = P\{X \leq x - \frac{1}{n}\} = F(x - \frac{1}{n}) \rightarrow F(x)$$

if F is continuous at x .]

This example shows why only the continuity pts are considered in the def.

(b) Consider a coin that comes up H with prob. p .

$X_p := \# \text{ coin flips until the first H.}$ (=waiting time for 1st success)

~ Geom(p) Geometric distribution

$$P\{X_p > k\} = P\{\underbrace{TT\dots T}_k\} = (1-p)^k, \quad k=1, 2, \dots$$

Geometric distribution
 $X \sim \text{Geom}(p)$

$$\Rightarrow P\{pX_p > x\} = (1-p)^{x/p} \rightarrow e^{-x} \text{ as } p \rightarrow 0.$$

Hence, we proved :

Exponential distribution:
 $Z \sim \text{Exp}(1)$ if $P\{Z > x\} = e^{-x} \quad \forall x > 0$

Prop A limit thm for geometric distribution

If $X_p \sim \text{Geom}(p)$ then $pX_p \xrightarrow{d} Z$ where $Z \sim \text{Exp.}$
as $p \rightarrow 0$

Relation to other modes of convergence?

$$\text{Prop } X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

Proof Fix a continuity pt x of $F \Rightarrow$

- $F_n(x) = P\{X_n \leq x\} \leq \underbrace{P\{X_n \leq x \text{ & } |X_n - x| \leq \varepsilon\}}_{\substack{\text{A} \\ P\{X \leq x + \varepsilon\} = F(x + \varepsilon)}} + \underbrace{P\{|X_n - x| > \varepsilon\}}_0$ assumption

$$\Rightarrow \limsup_n F_n(x) \leq F(x + \varepsilon) \rightarrow F(x) \text{ as } \varepsilon \downarrow 0 \quad (\text{continuity assm.})$$

$$\Rightarrow \limsup_n F_n(x) \leq F(x).$$

• Similarly, the lower Bd:

$$F(x - \varepsilon) = P\{X \leq x - \varepsilon\} \leq \underbrace{P\{X \leq x - \varepsilon \text{ & } |X_n - x| \leq \varepsilon\}}_{\substack{\text{A} \\ P\{X_n \leq x\} = F_n(x)}} + \underbrace{P\{|X_n - x| > \varepsilon\}}_0$$

$$\Rightarrow \liminf_n F_n(x) \geq F(x - \varepsilon) \rightarrow F(x) \text{ as } \varepsilon \downarrow 0 \quad (\text{continuity assm.})$$

$$\Rightarrow \liminf_n F_n(x) \geq F(x). \quad \square$$

Remark The converse is false, because X_n may be defined on different prob. spaces.

• A more concrete example:

$$X_n \sim \text{Ber}(1/2) \text{ iid } \Rightarrow X_n \xrightarrow{d} X_1 \text{ but } X_n \xrightarrow{P} X_2$$

$$\left[P\{|X_n - X_1| > \frac{1}{2}\} = \frac{1}{2} \neq 0 \right]$$

However:

Thm (Skorokhod Representation Theorem)

Assume $X_n \xrightarrow{d} X$. Then \exists r.v's Y, Y_1, Y_2, \dots defined on the same probability space, and such that:

$$Y \stackrel{d}{=} X, \quad Y_n \xrightarrow{d} X_n, \quad Y_n \xrightarrow{a.s.} Y.$$

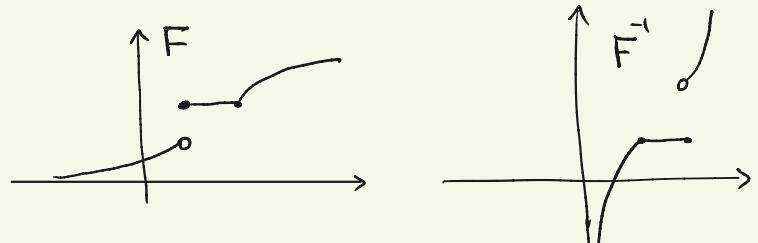
The proof uses the same method as we used to generate a r.v. from the uniform distribution: $X \xrightarrow{d} F^{-1}(U)$ Unit [0,1] cdf of X (*)

Def The generalized inverse of a nondecreasing function $F: \mathbb{R} \rightarrow \mathbb{R}$

is

$$F^{-1}(y) := \inf \{x : F(x) \geq y\}$$

- If F is one-to-one, F^{-1} is the usual inverse.



Lem If F is nondecreasing and right-continuous, then

$$x \geq F^{-1}(y) \Leftrightarrow F(x) \geq y$$

$\lceil (\Leftarrow)$ by def of F

(\Rightarrow) $\nexists F(x) < y \Rightarrow x \notin \{x' : F(x') \geq y\}$
 $F \uparrow \Rightarrow x$ must be on the left of this set

F is right-continuous \Rightarrow the set is closed

$$\Rightarrow x < \inf \{x' : F(x') \geq y\} = F^{-1}(y)$$

Proof of (*): $P\{F^{-1}(U) \leq x\} \xrightarrow{\text{Lem}} P\{U \leq F(x)\} = F(x)$

lem (convergence of inverse functions)

let F, F_1, F_2, \dots be nondecreasing & right-continuous.

If $F_n(x) \rightarrow F(x)$ for all continuity points x of F ,

then $F_n^{-1}(y) \rightarrow F^{-1}(y)$ for all continuity points y of F^{-1} .

• VB : Fix a continuity pt y of F^{-1} , $\varepsilon > 0$,

$$x := F^{-1}(y + \varepsilon).$$

Fix $\forall \delta > 0$ s.t. $x + \delta$ is a continuity pt of F $\begin{matrix} \text{dense} \Rightarrow \delta \\ \text{can be } \forall \text{ small} \end{matrix}$

Assm $\Rightarrow F_n(x + \delta) \xrightarrow{\text{lem}} F(x + \delta) \geq y + \varepsilon$

$\Rightarrow F_n(x + \delta) \geq y$ for large enough n .

lem $\Rightarrow x + \delta \geq F_n^{-1}(y)$

$\Rightarrow \limsup_n F_n^{-1}(y) \leq x + \delta = F^{-1}(y + \varepsilon) + \delta$

Since $\varepsilon, \delta > 0$ can be \forall small,

$\limsup_n F_n^{-1}(y) \leq F^{-1}(y).$

• LB is similar: $x := F^{-1}(y - \varepsilon)$, $x - \delta$ is a cont. pt. of F

Assm $\Rightarrow F_n(x - \delta) \rightarrow F(x - \delta) \xrightarrow{\text{lem}} y - \varepsilon \Rightarrow F_n(x - \delta) < y$ for large enough n

lem $\Rightarrow x - \delta < F_n^{-1}(y) \Rightarrow \liminf_n F_n^{-1}(y) \geq x - \delta = F^{-1}(y - \varepsilon) - \delta \xrightarrow{\forall \varepsilon} \liminf_n F_n^{-1}(y) \leq F^{-1}(y)$

Proof of Skorokhod Representation Theorem

let F, F_n be cdfs of X, X_n . Set

$$Y := F^{-1}(U), \quad Y_n := F_n^{-1}(U) \quad \text{where } U \sim \text{Unif}[0,1]$$

• We already showed that $Y \stackrel{d}{=} X, \quad Y_n \stackrel{d}{=} X_n \quad (\text{P.117})$.

• $X_n \xrightarrow{d} X \stackrel{\text{def}}{\Rightarrow} F_n(x) \rightarrow F(x) \quad \text{if continuity pts } x \text{ of } F$
 $\stackrel{\text{lem}}{\Rightarrow} F_n^{-1}(u) \rightarrow F^{-1}(u) \quad \text{if cont. pts } u \text{ of } F^{-1}$

The set of discontinuities is at most countable \Rightarrow

U is a continuity pt a.s.

$$\Rightarrow F_n^{-1}(U) \xrightarrow{\text{a.s.}} F^{-1}(U) \stackrel{\text{def}}{\Rightarrow} Y_n \xrightarrow{\text{a.s.}} Y. \quad \square.$$

• Remark It is not true that the joint distr's are the same:

$$(X_1, X_2, \dots) \stackrel{d}{=} (Y_1, Y_2, \dots) \quad (*)$$

(Example: iid $X_n \sim \text{Ber}(\gamma_2)$ satisfy $X_n \stackrel{d}{=} X_1$
but (*) would imply that $Y_n \sim \text{Ber}(\gamma_2)$ are iid, and Y_n don't converge a.s.)

• Remark: "a.s." \rightarrow "everywhere" By redefining $F_n, F \equiv 0$ at discontinuities)

• Summary of the modes of convergence:

