
Tfor non-ind rv's

#debergeT .
For each n = 1 , 2, . . .

let Xue
,
Xnz

, ...,
Xnu

be independent, mean zero rv's .

Assume that
,

as n -0,

(i) EX + + (0,
0)

(ii) EX&IXunk 23
-o aso "the Lindberg condition

ThenXN(0,
i

M

Remark S
-
-

① LindCIT => classical CCT (take Xnu=; (ii) = EX
c #xk armb

to eypc)
② The variancesThi :=EX satisfy man One-0 as no

TEXEXHIYnukaY + EX1qunk as
* "The Fellercondition"

↑

=> max EXE + o() as nx by (ii) .

E is arbitrary

⑭ show by example that Lindberg's condition If Feller's condition

Chint : sparsity .

Think of Poisson paradigm)
Prof same idea as in Classical CLT.

Levy's Continuity Then (p. 124) => enough to prove
-E

Ysn(t) = Yz(t) = e ↓ + ERR

Il

EeitSneinse
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· To approximate each fun ,
we Taylor's approx, of eith (p. 126) :

lette( + ice-) 4 min (1mB, x2) VueR.
-

↳as if pla
-
> Pax? + 4x21(kab Vaso

· let X be a r.
v

.

with mean o
,

varianceo

Substitute x = tX
,
take IE

,
use Jensen

.
In RUS

,
choose a=te :

/EeitX- (1-E)1 =48 + 4E(X119)]-

-

ep(-) =(E) (use (e
"

- x -x) Xu 20)

Use for X = Xnu : mean 0
,
variance =: Tun =

1
itnu

- exp(-)(4 + 4tE(Xmxnakap] + +"OEl

11·m En This inequality holds f complex numbers

whose moduli are El

- TBy induction,
it suffice to prove it for n = 2.

19 , 92-6,82) = Karb)an + 6 , (a2-a
, ))lan-bran · la-b , 1192) + 16 , 1192-92) . S 22

I I

I

# *

(4s.(t) -xxpP]-

da (Remp. 128)

limsup (4s(t) -expl
=> =0

.
QED

.
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Example (DeMirre-LapPaceCLT)
-

Ynm - Ber(Pn) indep .

ETh= Yun-Binom (n , Pr)

Assume Var(Tr) = nPn(1-Pu) - o as n-x

Ynx - Pr

Apply LindCLT for Xnn==

-Var (Tn)

V(i) EXiu = 1

1E => the sum in (ii) to for large n. v
(ii) Inul= O

=> Sn=zN renamingIn to Sui

Tur let SurBinom (n
, Pm) · If Var(Sn)- then (DeMoivre-taplace

-
-

C2T]

No

What happens if Var(s) - cret ?
↓
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RoissonLimit Theorem

· let XnuBer(P)
,

Sn=~Binom (n ,pa)
#

Assume PnEYz (by symmetry) and ESPm = X = cust as no

i

.e. const #of expected successes

·X fixed k= 0
,

1, ..., n :

PGSn = k3 = (n)p( -p.)n)()"(1 - -)"
- "

1 (n10,
k fixed)

-

-ke
&

↓
e-x

& puf
~ T

-Det (PexissondistributionXDissoT .

·in

X i -

....↑

↑ 111 1 11 >

0 1 2 Ed

⑭ EX = x
,
Var(X)= x (D()

· We showed (by summing k = fixed # of terms that

PSEkb -> PIXEK3 & fixed k

=> SX
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· Alternative
,
Forier-theoretic proof :

PoissonlimitTheorem
let S-Binom (n,P ,

Pr
-

them
I

SX-Poisson (1)
.

of By Levy Continuity Thm
, enough to show that

on-> IX Pointwise.

① Px(t) = Eei=eithe
= e-* exp(xeit) = exp(x(eit-1)

.

② Ps
.

() =Eit(Xx =ei,
= jeitpn + eito( -p))"= (1+(e)]"

( +o()
B

.

-> exp(x(eit1)) = Yx(t) .

SUMMARY :

usiaPoissondid
te

,
aa

Su-nPr

#10)
Enco

, 1)
=frequent successes

(i) If ESn = upn-- then

#
SufoPoisson(x) -rare successes.(ii) If ES

.

-> X = const them

o

⑭ Ento e Su-oHW : Poisson (x) - normal if x -x

Poisson (s) + Poisson(u) =
Poisson(s +h)

↑ indep.

↑

- 132-

https://goodnotes.com/

