

Bayes Formula

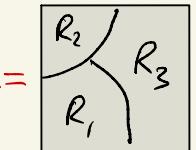
B.F. allows to swap the order of conditioning:

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{P(E|F)P(F)}{P(E)}}{P(E|F)P(F) + P(E|F^c)P(F^c)} = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^c)P(F^c)}$$

↑
L.T.P.

Ex A hiker went missing in the wilderness.

She is one of the three regions with prob's 0.5, 0.3, 0.2.


Whenever anyone is lost in region 1,

the search is successful with prob. 0.4,

and for regions 2, 3 it is 0.7 and 0.8...

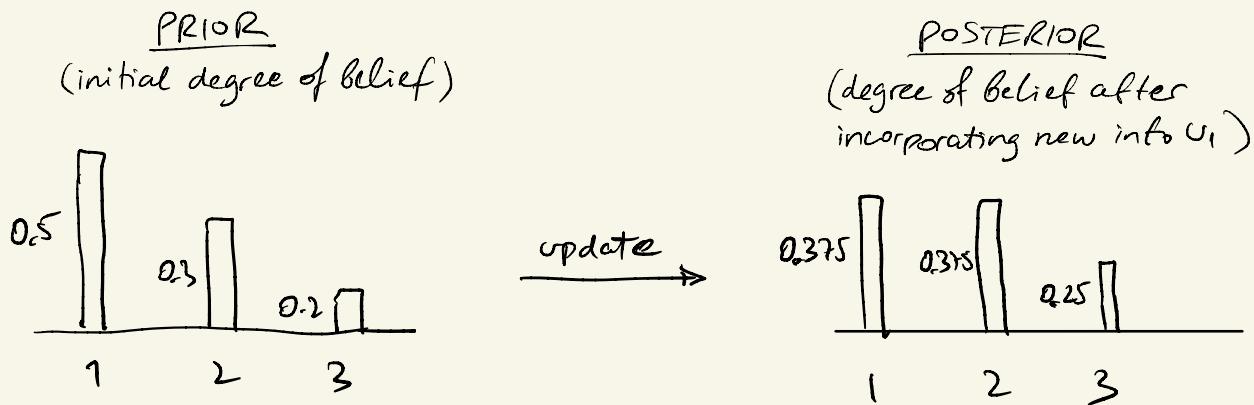
A search in region 1 was unsuccessful.

What is the prob. that the person is in region 1?

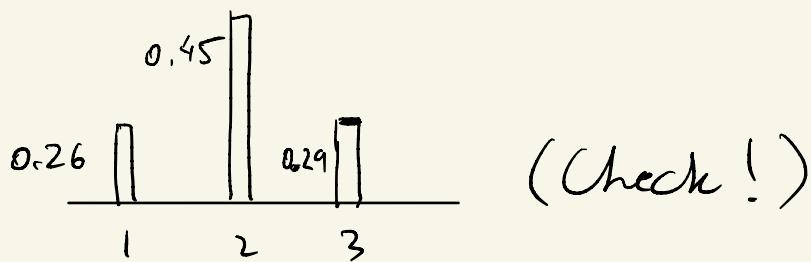
R_i = "the hiker is in region i ", $i=1, 2, 3$

U_i = "the search in region i is unsuccessful"

$$P(R_1|U_1) = \frac{\frac{P(U_1|R_1)P(R_1)}{P(U_1)}}{P(U_1|R_1)P(R_1) + P(U_1|R_2)P(R_2) + P(U_1|R_3)P(R_3)}$$


↑
L.T.P.

$$= \frac{(1-0.4)0.5}{(1-0.4)0.5 + 1 \cdot 0.3 + 1 \cdot 0.2} = 0.375$$


- Similarly, $P(R_2|U_1) = \frac{P(U_1|R_2)P(R_2)}{\text{same}} = 0.375$
- $P(R_3|U_1) = \frac{P(U_1|R_3)P(R_3)}{\text{same}} = 0.25$

} check!

- Thus, the prior probabilities $P(R_1), P(R_2), P(R_3)$ got updated to the posterior probabilities $P(R_1|U_1), P(R_2|U_1), P(R_3|U_1)$.

Ex Another search in reg. 1 is unsuccessful
 \Rightarrow prob's are further updated to

Remark Bayesian model of learning

(text \rightarrow image generative AI, spam filtering, etc.)

Def let X be a r.v. and F be an event.

The conditional expectation of X given F is

$$\mathbb{E}[X|F] = \frac{\mathbb{E}[X \mathbf{1}_F]}{P(F)}$$

- Ex: $X = \text{lifespan}$; $F: \text{smoker} \Rightarrow \mathbb{E}[X|F] = \text{life expectancy of a smoker}$.
- This def. is more general than the previous one:

$$\mathbb{P}(E|F) = \mathbb{E}[\mathbf{1}_E|F].$$

So we will work with conditional expectation from now on.

More generally:

2. Conditioning on a σ -algebra

Def let X be a r.v. and $\mathcal{F} \subset \Sigma$ be a σ -algebra.

The conditional expectation of X given \mathcal{F} is a r.v. Y satisfying

- (i) Y is \mathcal{F} -measurable \leftarrow i.e. $\{Y \in B\} \in \mathcal{F} \forall B \in \mathcal{B}$
- (ii) $\mathbb{E}[Y \mathbf{1}_F] = \mathbb{E}[X \mathbf{1}_F] \quad \forall F \in \mathcal{F}$

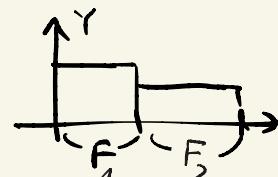
Notation: $Y = \mathbb{E}[X|\mathcal{F}]$.

- NB: $\mathbb{E}[X|\mathcal{F}]$ is a random variable

Examples:

(a) Let $\Omega = F_1 \cup F_2$; $\mathcal{F} = \sigma(F_1, F_2) = \{\emptyset, F_1, F_2, \Omega\}$

e.g. "smoker" $\Rightarrow \mathbb{E}[X|\mathcal{F}] = \begin{cases} \mathbb{E}[X|F_1] & \text{if } F_1 \text{ occurs} \\ \mathbb{E}[X|F_2] & \text{if } F_2 \text{ occurs} \end{cases}$


\leftarrow life expectancy of smokers \leftarrow life expectancy of nonsmokers

Proof (i) Y is constant on F_1 and on F_2
 $\Rightarrow \forall B \in \mathcal{B}, \{Y \in B\} \text{ is } \emptyset, F_1, F_2 \text{ or } \Omega \Rightarrow \in \mathcal{F}$.

(ii) $Y|_{F_1} = \begin{cases} \mathbb{E}[X|F_1] & \text{if } F_1 \text{ occurs} \\ 0 & \text{if not} \end{cases}$

$\Rightarrow \mathbb{E}[Y \mathbf{1}_{F_1}] = \mathbb{E}[X|F_1] \cdot P(F_1) = \mathbb{E}[X \mathbf{1}_{F_1}]$.

def $\frac{\mathbb{E}[X \mathbf{1}_F]}{P(F)}$

Similarly for F_2, \emptyset, Ω . \square

(b) More generally, consider a partition

$$\Sigma = F_1 \cup \dots \cup F_n$$

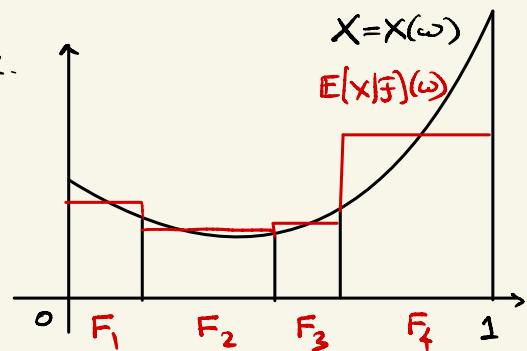
and let $\mathcal{F} := \sigma(F_1, \dots, F_n)$. Then

$$\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X|F_i] \text{ if } F_i \text{ occurs. (Check!)}$$

e.g. $F_1 = \{\text{person's age} \in [0, 10]\}$, $F_2 = \{\text{age} \in [10, 20]\}$, ..., $F_{10} = \{\text{age} \in [90, 100]\}$
 $X = \text{person's height}$

$\Rightarrow \mathbb{E}[X|\mathcal{F}] = \text{ave. height of the random person's cohort}$

(c) Same example, in the analytic form:


$$\Sigma = [0, 1], \quad \mathcal{F} = \mathcal{B}(\mathbb{R}), \quad P = \text{Lebesgue measure.}$$

$X: [0, 1] \rightarrow \mathbb{R}$ an integrable function.

$$\mathbb{E}[X] = \int_0^1 X(\omega) d\omega$$

$$\mathbb{E}[X|F_i] = \frac{1}{|F_i|} \int_{F_i} X(\omega) d\omega$$

$$\mathbb{E}[X|\mathcal{F}](t) = \frac{1}{|F_i|} \int_{F_i} X(\omega) d\omega \text{ if } t \in F_i$$

Remarks

(a) For the coarsest σ -algebra $\mathcal{F} = \{\emptyset, \Sigma\}$, $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$

For the finest σ -algebra $\mathcal{F} = \Sigma$, $\mathbb{E}[X|\Sigma] = X$

Intermediate $\mathcal{F} \Rightarrow$ interpolates between $\mathbb{E}[X]$ and X .

(b) \mathcal{F} encodes available information (e.g. smoking habits, age, ...)

$\mathbb{E}[X|\mathcal{F}]$ encodes the best prediction of X given that info

No info $\Rightarrow \mathbb{E}[X]$ All info $\Rightarrow X$ (exact)

3. Existence, Uniqueness

Thm If integrable r.v. X and σ -algebra $\mathcal{F} \subset \Sigma$,

(i) $E[X|\mathcal{F}]$ exists

(ii) and is unique: if Y, Y' are both cond. exp's of X given \mathcal{F} , then $Y = Y'$ a.s.

Proof of Existence is based on:

Thm (Radon-Nikodym Thm)

(Ω = countable union of nble sets with finite measures)

Let μ, ν be two σ -finite measures

on a measurable space (Ω, \mathcal{F}) .

Assume $\nu \ll \mu$ (absolutely continuous)

Then $\exists \mathcal{F}$ -measurable function $f: \Omega \rightarrow [0, \infty)$

$$\text{s.t. } \nu(F) = \int f d\mu \quad \forall F \in \mathcal{F}$$

$F \uparrow := \int f \mathbf{1}_F d\mu$

• wlog $X \geq 0$ (otherwise decompose $X = X^+ - X^-$)

• Define $\nu(F) := E[X \mathbf{1}_F], \quad F \in \mathcal{F}$

• Then ν is a finite measure on (Ω, \mathcal{F})

since $E[X] < \infty$

$$\forall \text{ disjoint } F_1, F_2, \dots \in \mathcal{F}: \quad \text{by monotone convergence thm}$$

$$\nu\left(\bigcup_{i=1}^{\infty} F_i\right) = E\left[\sum_{i=1}^{\infty} X \mathbf{1}_{F_i}\right] = \sum_{i=1}^{\infty} E[X \mathbf{1}_{F_i}] = \sum_{i=1}^{\infty} \nu(F_i)$$

• $\nu \ll P$ (if $P(F) = 0$ then $E[X \mathbf{1}_F] = 0$)

• Apply RNT $\Rightarrow \exists f =: Y$ that is \mathcal{F} -integrable and

$$E[X \mathbf{1}_F] = \int_F Y dP = E[Y \mathbf{1}_F] \quad \forall F \in \mathcal{F}. \quad \square$$

Proof of Uniqueness Assume $E[X \mathbf{1}_F] = E[Y \mathbf{1}_F] = E[Y' \mathbf{1}_F] \quad \forall F \in \mathcal{F}$

Subtract $\Rightarrow E[(Y - Y') \mathbf{1}_F] = 0$. Apply for $F := \{Y - Y' \geq 0\} \Rightarrow E(Y - Y')^+ = 0$. Similarly, $E(Y - Y')^- = 0$.

Add $\Rightarrow E|Y - Y'| = 0 \Rightarrow Y = Y'$ a.s.