

- | Cover MARKOV CHAINS before martingales. Recurrence of 1D r. walk & absorbing states would immediately imply stopping times \mathbb{C}_0 a.s. in fitting 1,
- ② Gambler's ruin, Fisher-Wright examples. We won't need to prove that.

MARTINGALES

Stochastic process: X_1, X_2, \dots

Def let (Ω, \mathcal{F}, P) be a prob. space.

let $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \dots \subseteq \Sigma$ be a sequence of σ -algebras (a "filtration")

A sequence of integrable r.v's (X_1, X_2, \dots) is called a martingale if $\forall n \in \mathbb{N}$:

- (i) X_n is \mathcal{F}_n -measurable (" (X_n) is adapted to (\mathcal{F}_n) ")
- (ii) $E[X_{n+1} | \mathcal{F}_n] = X_n$ a.s. (no drift)

Remark: If process X_1, X_2, \dots can be made a martingale

(i) choose $F_n = \sigma(x_1, \dots, x_n)$

(ii) subtract the drift - see later

EXAMPLES :

(a) Simple random walk: $S_n = Z_1 + \dots + Z_n$, $Z_i \sim \text{Rademacher}$ iid

is a martingale w.r.t. $\mathcal{F}_n = \sigma(Z_1, \dots, Z_n)$

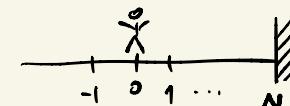
$$\begin{aligned} \mathbb{E}[S_{n+1} | Z_1, \dots, Z_n] &= \mathbb{E}[S_n | Z_1, \dots, Z_n] + \mathbb{E}[Z_{n+1} | Z_1, \dots, Z_n] \\ &\stackrel{\text{mble}}{=} S_n + \mathbb{E}[Z_{n+1}] = S_n. \end{aligned}$$

(b) More generally, partial sums of \mathbb{H} mean zero r.v.'s

(c) Random walk with an absorbing wall

$$X_0 = 0; \quad X_{n+1} = \begin{cases} X_n + Z_{n+1} & \text{if } X_n < N \\ X_n & \text{if } X_n = N \end{cases}$$

↑ iid Rademachers



(i) X_n is $\sigma(Z_1, \dots, Z_n)$ -measurable (X_n is determined by Z_1, \dots, Z_n)

(ii) $\mathbb{E}[X_{n+1} | Z_1, \dots, Z_n] = X_n$ in either case.

- Convenient to express as

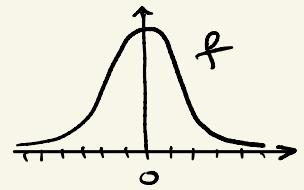
$$X_n = S_{n \wedge T}$$

where $S_n = Z_1 + \dots + Z_n$ is a simple random walk

$T = \min \{ k : S_k = N \}$ is a "stopping time"

(d) More generally, a slowed-down random walk:

$$X_{n+1} := X_n + Z_{n+1} f(X_n) \quad \forall f: \mathbb{R} \rightarrow \mathbb{R}, \text{ e.g.}$$



(e) Quadratic martingale:

If $S_n = Z_1 + \dots + Z_n$ where Z_i are iid mean 0 variance 1 then $S_n^2 - n$ is a martingale.

$$\begin{aligned} \mathbb{E}[S_{n+1}^2 - (n+1) | Z_1, \dots, Z_n] &= \mathbb{E}[S_n^2 + 2S_n Z_{n+1} + Z_{n+1}^2 - n-1 | Z_1, \dots, Z_n] \\ &\quad \text{("} (S_n + Z_{n+1})^2 \text{") } \quad \text{("} S_n^2 \text{") } \quad \text{("} 2S_n Z_{n+1} \text{") } \quad \text{("} Z_{n+1}^2 \text{") } \quad \text{("} n-1 \text{") } \\ &= S_n^2 + 2S_n \underbrace{\mathbb{E}[Z_{n+1} | Z_1, \dots, Z_n]}_{\text{0 (indep)}} + \underbrace{\mathbb{E}[Z_{n+1}^2]}_{\frac{1}{2}} - n-1 = S_n^2 - n. \end{aligned}$$

(f) Product martingale

If Z_1, Z_2, \dots be indep. r.v's with mean 1, then $X_n = Z_1 \cdots Z_n$ is a martingale.

$$\begin{aligned} \mathbb{E}[X_{n+1} | Z_1, \dots, Z_n] &= X_n \mathbb{E}[Z_{n+1} | Z_1, \dots, Z_n] = X_n \underbrace{\mathbb{E}[Z_{n+1}]}_{\frac{1}{1}} = X_n \end{aligned}$$

$\text{("} X_n Z_{n+1} \text{") } \quad \text{("} \text{indep} \text{") }$

(g) in particular, St. Petersburg martingale:

$$X_0 := 1, \quad X_{n+1} | X_n = \begin{cases} 2X_n, & \text{prob. } \frac{1}{2} \\ 0, & \text{prob. } \frac{1}{2} \end{cases} \quad (\text{double the Bet})$$

$$\Rightarrow X_n = Z_1 \cdots Z_n \quad \text{where} \quad Z_k = \begin{cases} 2, & \text{prob. } \frac{1}{2} \\ 0, & \text{prob. } \frac{1}{2} \end{cases} \quad \text{iid. } \mathbb{E}[Z_k] = 1.$$

(h) de Moivre's martingale

If $S_n := Z_1 + \dots + Z_n$ is a nonsymmetric r.walk: $Z_k = \begin{cases} 1, \text{ prob. } p \\ -1, \text{ prob. } q = 1-p \end{cases}$
 then $X_n := \left(\frac{q}{p}\right)^{S_n}$ is a martingale

$$X_n = \left(\frac{q}{p}\right)^{Z_1} \cdots \left(\frac{q}{p}\right)^{Z_n}, \quad \mathbb{E}\left(\frac{q}{p}\right)^{Z_k} = \left(\frac{q}{p}\right)^1 \cdot p + \left(\frac{q}{p}\right)^{-1} \cdot q = q + p = 1$$

\Rightarrow product martingale.

(i) likelihood ratio test (recall from before):

SKIP-

counterintuitive.

Assume a r.v. X has density f or g .
 Decide which one, based on an iid sample $X_1, \dots, X_n \sim X$.
 Recall the solution: Likelihood Ratio $\Lambda_n := \frac{\prod_{i=1}^n f(x_i)}{\prod_{i=1}^n g(x_i)}$ $\begin{cases} > 1 \Rightarrow f \\ \leq 1 \Rightarrow g \end{cases}$

• If X has density g , then (Λ_n) is a martingale

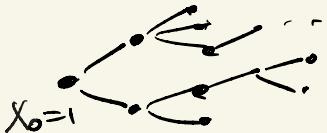
$$\Lambda_n = Y_1 \cdots Y_n \text{ where } Y_i = \frac{f(x_i)}{g(x_i)} \text{ are iid r.v.'s}$$

$$\text{with } \mathbb{E} Y_i = \int_{-\infty}^{\infty} \frac{f(x)}{g(x)} \cdot g(x) dx = 1 \Rightarrow \text{product martingale.}$$

• Hence, under the g -hypothesis, (Λ_n) does not "drift"

Remark: this is sufficient but not necessary: if f is uniform $[0, a]$, g is uniform $[0, a']$ and X has dens. f , then still $\mathbb{E} Y = \frac{\int f}{\int g} = 1$

(j) Branching processes



Galton-Watson process: model of the size of population

Assume each member of n 'th generation gives birth independently to a random # of children, μ on average.

$X_n :=$ # individuals in n 'th generation

$X_0 = 1$; $X_{n+1} := \sum_{i=1}^{X_n} \xi_i^{(n)}$ where $\xi_i^{(n)} \geq 0$ are iid with mean μ .

$$\mathbb{E}[X_{n+1} | X_n] = \sum_{i=1}^{X_n} \mathbb{E} \xi_i^{(n)} = \mu X_n$$

$\Rightarrow \frac{X_n}{\mu^n}$ is a martingale (divide by μ^n to check)

(k) Polya's urn

An urn initially contains N white and M black balls.

One ball is randomly drawn from an urn; its color is observed; it is returned to the urn, and an additional ball of the same color is added to the urn. Repeat.

X_n := fraction of white balls after n th step
is a martingale

(Motivation: rich get richer)

↑ If after n th step the urn contains w white and b black balls, $\Rightarrow X_n = \frac{w}{w+b}$

$$X_{n+1} = \begin{cases} \frac{w+1}{w+b+1}, & \text{prob} = \frac{w}{w+b} \\ \frac{w}{w+b+1}, & \text{prob} = \frac{b}{w+b} \end{cases} \quad \begin{array}{l} \leftarrow \text{white ball drawn} \\ \leftarrow \text{black ball drawn} \end{array}$$

$$\mathbb{E}[X_{n+1} | w, b] = \frac{w+1}{w+b+1} \cdot \frac{w}{w+b} + \frac{w}{w+b+1} \cdot \frac{b}{w+b} = \frac{(w+1+b)w}{(w+b+1)(w+b)} = \frac{w}{w+b} = X_n$$

Intuition: each new ball is white with prob = current white proportion.
 $\Rightarrow \mathbb{E}$ # white balls doesn't change.

(l) Doob's martingale

Let X be a r.v. with $\mathbb{E}|X| < \infty$ and (\mathcal{F}_n) be a filtration. Then

$$X_n := \mathbb{E}[X | \mathcal{F}_n]$$

is a martingale.

$$\boxed{\mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{E} \left[\mathbb{E}[X | \mathcal{F}_{n+1}] | \mathcal{F}_n \right] = \mathbb{E}[X | \mathcal{F}_n] = X_n}$$

SIMPLE PROPERTIES

Prop.1 $\mathbb{E}[X_n | \mathcal{F}_m] = X_{\min(n, m)}$ $\forall n, m \in \mathbb{N}$

If $n \leq m$ then X_n is $\mathcal{F}_n \subset \mathcal{F}_m$ -measurable $\Rightarrow \mathbb{E}[X_n | \mathcal{F}_m] = X_n$

If $n > m$ then $\mathbb{E}[X_n | \mathcal{F}_m] = \mathbb{E}\left[\underbrace{\mathbb{E}[X_n | \mathcal{F}_{n-1}]}_{\substack{\text{repeat} \\ \text{||} \\ X_{n-1}}} | \mathcal{F}_m\right] = \dots = \mathbb{E}[X_m | \mathcal{F}_m] = X_m$

(L^2 angles)

Prop 2 Martingale increments are mean zero & uncorrelated:

$$\forall k \leq \ell \leq m \leq n : \begin{cases} \mathbb{E}(X_\ell - X_k) = 0 \\ \mathbb{E}(X_\ell - X_k)(X_n - X_m) = 0 \end{cases} \quad \begin{array}{ccccccc} & & & & & & \\ & \nearrow & & \nearrow & & & \\ k & \ell & m & n \end{array}$$

• $X_k = \mathbb{E}[X_\ell | \mathcal{F}_k] \xrightarrow{\text{Tower}} \mathbb{E}X_k = \mathbb{E}X_\ell$

• $\mathbb{E}(X_\ell - X_k)(X_n - X_m) \xrightarrow{\text{Tower}} \mathbb{E}\left[\underbrace{\mathbb{E}[(X_\ell - X_k)(X_n - X_m) | \mathcal{F}_m]}_{\mathcal{F}_m\text{-measurable}}\right]$

$$= \mathbb{E}\left[\underbrace{(X_\ell - X_k)}_{\substack{\text{||} \\ X_m}} \underbrace{\mathbb{E}[X_n - X_m | \mathcal{F}_m]}_{\substack{\text{||} \\ X_m}}\right] = 0.$$

$\underbrace{\mathbb{E}[X_n | \mathcal{F}_m]}_{\substack{\text{|| (Prop.1)} \\ X_m}} - \underbrace{\mathbb{E}[X_m | \mathcal{F}_m]}_{\substack{\text{||} \\ X_m}} = 0$

• Thus, \forall martingale: $X_n = X_0 + \sum_{k=1}^n (X_k - X_{k-1})$

\uparrow
Sum of uncorrelated, mean 0 r.v's
("martingale differences") \Rightarrow can prove WLLN.