
Chapter 4

The Occupancy and Coupon Collector
problems
By Sariel Har-Peled, May 29, 2013¬

4.1 Preliminaries
Definition 4.1.1 (Variance and Standard Deviation). For a random variable X, let V[X] = E

[
(X − µX)2

]
=

E
[
X2

]
− µ2

X denote the variance of X, where µX = E[X]. Intuitively, this tells us how concentrated
is the distribution of X.

The standard deviation of X, denoted by σX is the quantity
√

V[X].

Observation 4.1.2. (i) V[cX] = c2 V[X].
(ii) For X and Y independent variables, we have V[X + Y] = V[X] + V[Y].

Definition 4.1.3 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with
probability p, and 0 (i.e., tail) with probability q = 1 − p. Let X be this random variable. The
variable X is has Bernoulli distribution with parameter p. Then E[X] = p, and V[X] = pq.

Definition 4.1.4 (Binomial distribution). Assume that we repeat a Bernoulli experiments n times
(independently!). Let X1, . . . , Xn be the resulting random variables, and let X = X1 + · · · + Xn.
The variable X has the binomial distribution with parameters n and p. We denote this fact by
X ∼ B(n, p). We have

b(k; n, p) = Pr[X = k] =
(
n
k

)
pkqn−k.

Also, E[X] = np, and V[X] = npq.
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Observation 4.1.5. Let C1, . . . ,Cn be random events (not necessarily independent). Than

Pr
 n∪

i=1

Ci

 ≤ n∑
i=1

Pr[Ci] .

(This is usually referred to as the union bound.) If C1, . . . ,Cn are disjoint events then

Pr
 n∪

i=1

Ci

 = n∑
i=1

Pr[Ci] .

Lemma 4.1.6. For any positive integer n, we have:
(i) (1 + 1/n)n ≤ e.
(ii) (1 − 1/n)n−1 ≥ e−1.
(iii) n! ≥ (n/e)n.

(iv) For any k ≤ n, we have:
(n
k

)k
≤

(
n
k

)
≤
(ne

k

)k
.

Proof : (i) Indeed, 1 + 1/n ≤ exp(1/n), since 1 + x ≤ ex, for x ≥ 0. As such (1 + 1/n)n ≤
exp(n(1/n)) = e.

(ii) Rewriting the inequality, we have that we need to prove
(

n−1
n

)n−1
≥ 1

e . This is equivalence to

proving e ≥
(

n
n−1

)n−1
=
(
1 + 1

n−1

)n−1
, which is our friend from (i).

(iii) Indeed,
nn

n!
≤
∞∑

i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i! . This implies that (n/e)n ≤ n!, as required.
(iv) Indeed, for any k ≤ n, we have n

k ≤
n−1
k−1 since kn − n = n(k − 1) ≤ k(n − 1) = kn − k. As

such, n
k ≤

n−i
k−i , for 1 ≤ i ≤ k − 1. As such,(n

k

)k
≤ n

k
· n − 1

k − 1
· · · n − i

k − i
· · · n − k + 1

1
=

n!
(n − k)!k!

=

(
n
k

)
.

As for the other direction, we have (
n
k

)
≤ nk

k!
≤ nk(

k
e

)k =

(ne
k

)k
,

by (iii).

4.2 Occupancy Problems
Problem 4.2.1. We are throwing m balls into n bins randomly (i.e., for every ball we randomly
and uniformly pick a bin from the n available bins, and place the ball in the bin picked). What
is the maximum number of balls in any bin? What is the number of bins which are empty? How
many balls do we have to throw, such that all the bins are non-empty, with reasonable probability?
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Let Xi be the number of balls in the ith bins, when we throw n balls into n bins (i.e., m = n).
Clearly,

E[Xi] =
n∑

j=1

Pr
[
The jth ball fall in ith bin

]
= n · 1

n
= 1,

by linearity of expectation. The probability that the first bin has exactly i balls is(
n
i

)(
1
n

)i(
1 − 1

n

)n−i

≤
(
n
i

)(
1
n

)i

≤
(ne

i

)i
(
1
n

)i

=

(e
i

)i

This follows by Lemma 4.1.6 (iv).
Let C j(k) be the event that the jth bin has k or more balls in it. Then,

Pr[C1(k)] ≤
n∑

i=k

(e
i

)i
≤
(e
k

)k
(
1 +

e
k
+

e2

k2 + . . .

)
=

(e
k

)k 1
1 − e/k

.

Let k∗ = ⌈(3 ln n)/ ln ln n⌉. Then,

Pr[C1(k∗)] ≤
( e
k∗

)k∗ 1
1 − e/k∗

≤ 2
(

e
(3 ln n)/ ln ln n

)k∗

= 2
(
exp(1 − ln 3 − ln ln n + ln ln ln n)

)k∗

≤ 2
(

exp(− ln ln n + ln ln ln n)
)k∗

≤ 2 exp
(
−3 ln n + 6 ln n

ln ln ln n
ln ln n

)
≤ 2 exp(−2.5 ln n) ≤ 1

n2 ,

for n large enough. We conclude, that since there are n bins and they have identical distributions
that

Pr
[
any bin contains more than k∗ balls

]
≤

n∑
i=1

Ci(k∗) ≤
1
n
.

Theorem 4.2.2. With probability at least 1 − 1/n, no bin has more than k∗ =
⌈

3 ln n
ln ln n

⌉
balls in it.

Exercise 4.2.3. Show that for m = n ln n, with probability 1 − o(1), every bin has O(log n) balls.

It is interesting to note, that if at each iteration we randomly pick d bins, and throw the ball into
the bin with the smallest number of balls, then one can do much better. We currently do not have
the machinery to prove the following theorem, but hopefully we would prove it later in the course.

Theorem 4.2.4. Suppose that n balls are sequentially places into n bins in the following manner.
For each ball, d ≥ 2 bins are chosen independently and uniformly at random (with replacement).
Each ball is placed in the least full of the d bins at the time of placement, with ties broken randomly.
After all the balls are places, the maximum load of any bin is at most ln ln n/(ln d) + O(1), with
probability at least 1 − o(1/n).

Note, even by setting d = 2, we get considerable improvement. A proof of this theorem can be
found in the work by Azar et al. [ABKU00].
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4.2.1 The Probability of all bins to have exactly one ball
Next, we are interested in the probability that all m balls fall in distinct bins. Let Xi be the event
that the ith ball fell in a distinct bin from the first i − 1 balls. We have:

Pr
 m∩

i=2

Xi

 = Pr[X2]
m∏

i=3

Pr

Xi

∣∣∣∣∣∣∣
i−1∩
j=2

X j

 ≤ m∏
i=2

(
n − i + 1

n

)
≤

m∏
i=2

(
1 − i − 1

n

)

≤
m∏

i=2

e−(i−1)/n ≤ exp
(
−m(m − 1)

2n

)
,

thus for m =
⌈√

2n + 1
⌉
, the probability that all the m balls fall in different bins is smaller than 1/e.

This is sometime referred to as the birthday paradox. You have m = 30 people in the room,
and you ask them for the date (day and month) of their birthday (i.e., n = 365). The above shows
that the probability of all birthdays to be distinct is exp(−30 · 29/730) ≤ 1/e. Namely, there is
more than 50% chance for a birthday collision, a simple but counterintuitive phenomena.

4.3 The Markov and Chebyshev inequalities
We remind the reader that for a random variable X assuming real values, its expectation is E[Y] =∑

y y · Pr
[
Y = y

]
. Similarly, for a function f (·), we have E

[
f (Y)

]
=

∑
y f (y) · Pr

[
Y = y

]
.

Theorem 4.3.1 (Markov Inequality). Let Y be a random variable assuming only non-negative
values. Then for all t > 0, we have

Pr[Y ≥ t] ≤ E[Y]
t

Proof : Indeed,

E[Y] =
∑
y≥t

y Pr
[
Y = y

]
+

∑
y<t

y Pr
[
Y = y

] ≥∑
y≥t

y Pr
[
Y = y

]
≥

∑
y≥t

t Pr
[
Y = y

]
= t Pr[Y ≥ t] .

Markov inequality is tight, as the following exercise testifies.

Exercise 4.3.2. For any (integer) k > 1, define a random positive variable Xk such that Pr
[
Xk ≥ k E[Xk]

]
=

1
k

.

Theorem 4.3.3 (Chebyshev inequality). Pr
[|X − µX | ≥ tσX

] ≤ 1
t2 , where µX = E[X] and σX =

√
V[X].

Proof : Note that
Pr

[
|X − µX | ≥ tσX

]
= Pr

[
(X − µX)2 ≥ t2σ2

X

]
.

Set Y = (X − µX)2. Clearly, E[Y] = σ2
X. Now, apply Markov inequality to Y .
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4.4 The Coupon Collector’s Problem
There are n types of coupons, and at each trial one coupon is picked in random. How many trials
one has to perform before picking all coupons? Let m be the number of trials performed. We
would like to bound the probability that m exceeds a certain number, and we still did not pick all
coupons.

Let Ci ∈ {1, . . . , n} be the coupon picked in the ith trial. The jth trial is a success, if C j was not
picked before in the first j − 1 trials. Let Xi denote the number of trials from the ith success, till
after the (i + 1)th success. Clearly, the number of trials performed is

X =
n−1∑
i=0

Xi.

Now, the probability of Xi to succeed in a trial is pi = (n − i)/n, and Xi has the geometric distribu-
tion with probability pi. As such E[Xi] = 1/pi, and V[Xi] = q/p2 = (1 − pi)/p2

i .
Thus,

E[X] =
n−1∑
i=0

E[Xi] =
n−1∑
i=0

n
n − i

= nHn = n(ln n + Θ(1)) = n ln n + O(n),

where Hn =
∑n

i=1 1/i is the nth Harmonic number.
As for variance, using the independence of X0, . . . , Xn−1, we have

V[X] =
n−1∑
i=0

V[Xi] =
n−1∑
i=0

1 − pi

p2
i

=

n−1∑
i=0

1 − (n − i)/n(
n−i
n

)2 =

n−1∑
i=0

i/n(
n−i
n

)2 =

n−1∑
i=0

i
n

( n
n − i

)2

= n
n−1∑
i=0

i
(n − i)2 = n

n∑
i=1

n − i
i2 = n

 n∑
i=1

n
i2 −

n∑
i=1

1
i

 = n2
n∑

i=1

1
i2 − nHn.

Since, limn→∞
∑n

i=1
1
i2 = π

2/6, we have lim
n→∞

V[X]
n2 =

π2

6
.

This implies a weak bound on the concentration of X, using Chebyshev inequality, but this is
going to be quite weaker than what we implied we can do. Indeed, we have

Pr
[
X ≥ n log n + n + t · n π√

6

]
≤ Pr

[
|X − E[X]| ≥ t V[X]

]
≤ 1

t2 ,

for any t.
Stronger bounds will be shown in the next lecture.

4.5 Notes
The material in this note covers parts of [MR95, sections 3.1,3.2,3.6]
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