S1:E2

$$
\left.\begin{array}{rl}
E_{x} & \exists \text { diff. flights } S D-\angle A \\
\exists 4 \text { diff. flights } L A \rightarrow S F
\end{array}\right\} \Rightarrow \begin{aligned}
& \exists 3.4=12 \text { diff. } \\
& \text { itineraries. SD } \rightarrow S F
\end{aligned}
$$

\Rightarrow Multiplication Principle
Suppose 2 experiments are performed, exp-1 can result in \forall of m possible outcomes $\exp 2$ \qquad n
\Rightarrow together, there are m poss. outcomes of (exp. 1, exp 2)

Exp 1:m

$$
\|^{\prime}(m \mathrm{l}) \quad-\ldots(m n)
$$

Generalized up: $n_{1} n_{2} \ldots n_{k}$
Ex \# 4-letter words (with or without meaning)

$$
=\underbrace{26 \cdots 26}_{4}=26^{4}=456,976
$$

Ex \# 4-letter words with all different letters "MINT"

$$
=26 \cdot 25 \cdot 24 \cdot 23=358,800
$$

Ex (u)Flip a coin 5 times.
e.g. KTTHT \# possible outcomes $=\underbrace{2 \cdots 2}_{5}=2^{5}=32$
(b) Toss a die 5 tines.
\# possible outcomes $=\underbrace{6--6}_{5}=6^{5}=7,776$
1.3. Permutations

Question: In how many ways can n people form a line? 6 am DM V.....
(or a passport control line (a airport)

Aus: $n(n-1)(n-2) \cdots 2 \cdot 1=n!$

Ex How many diff. words can le made of letters $U, C, 1$?

$$
\text { Ans: } 3!=3 \cdot 2 \cdot 1=6 . \quad\left(\begin{array}{ll}
U C 1, & V \mid C, I U C, 1 C U \\
C U 1, C 1 U
\end{array}\right)
$$

Def A permutation of n different objects is any ordered arrangement of them. There are $n!$ permutations. CONVENTION: $0!=1$

Ex \# ways to arrange n people in a line so that Jessica is allays in front of Yuki?
$\left\lceil\frac{n!}{2}\right.$, by symmetry $]$
Ex \# ways to sit n people in a circle $\lceil(n-1)!$: sit Person $1 \quad \forall$ place; let $n-1$ other people form a "line" counterclockwise of Person 1

