S1:E3

Last Episode: factorial $n!=1 \cdot 2 \cdot 3 \cdots n$. $0!=0, \quad 1!=1, \quad 2!=1 \cdot 2=2, \quad 3!=1 \cdot 2 \cdot 3=6, \ldots$

BIRTKDAY PROBLEM 2: What is the probability that among your 100 friends, some have the same BD?

As before:
. Complementary problecos: Prob (all BD are different.) =?

$$
\text { \#(ways to assign BD's })=\underbrace{365 \cdots 365}_{100}=365^{100}
$$

- All assignments axe equally likely.
\#(ways to assign BD's $\left.\begin{array}{l}\text { so that all are different }\end{array}\right)=\underbrace{365.364 .363 \cdots 266}_{100}$

$$
=\frac{365 \cdot 364 \cdots 266 \cdot 265 \cdots 3 \cdot 2 \cdot 1}{265 \cdots 3 \cdot 2 \cdot 1}=\frac{365!}{265!}
$$

$$
\begin{equation*}
\Rightarrow \operatorname{Prob}(\text { all } B D \text { 's are different })=\frac{365!/ 265!}{365^{100}} \approx 3 \cdot 10^{-7} \tag{*}
\end{equation*}
$$

\Rightarrow Rob. (some BD's are the same) $=1-(*)=\underbrace{0.9999997}_{6}$

- Problem: Computer can't calculate (x) : $365!\approx \infty$
- $n!=1 \cdot 2 \cdot 3 \cdots \cdots$ grows to n fast e.g. $10!=3,628,800$
- Stirling's approximation:

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad \text { as } n \rightarrow \infty
$$

- For $n=365, k=100$,

$$
(*)=\frac{n!}{(n-k)!n^{k}} \approx \frac{\sqrt{2 \pi n} n^{n}}{e^{n}} \cdot \frac{e^{n-k}}{\sqrt{2 \pi(n-k)}(n-k)^{n-k}} \cdot \frac{1}{n^{k}}
$$

$\xlongequal[\text { Dir }]{\text { simplify }}\left[\left(\frac{n}{n-k}\right)^{n-k+\frac{1}{2}} e^{-k} \leftarrow\right.$ computable, gives (k).

