S1: E3

last Episode: factorial $n! = 1 \cdot 2 \cdot 3 \cdots n$. $0! = 0, 1! = 1, 2! = 1 \cdot 2 = 2, 3! = 1 \cdot 2 \cdot 3 = 6, ...$

BIRTHDAY PRO&LEM 2: What is the probability that
among your 100 friends, some have the same BD?
As before:
Complementary problem: Prob (all BDs are different) = ?
#(ways to assign BD's) =
$$\frac{365\cdots 365}{100} = \frac{365^{100}}{100}$$

• All assignments are equally likely.
#(ways to assign BD's) = $\frac{365\cdots 365}{100} = \frac{365\cdot 364\cdot 363\cdots 266}{100}$
= $\frac{365\cdot 364\cdots 266\cdot 265\cdots 3\cdot 2\cdot 1}{265\cdots 3\cdot 2\cdot 1} = \frac{365\cdot 1}{265\cdot 1}$

=)
$$P_{rol}(all BD's are different) = \frac{365!/265!}{365^{100}} \approx 3.10^{-7}$$
 (*)
=) $P_{rol}(some BD's are the same) = 1-(*) = 0.99999997$

-1 --

<u>Problem</u>: Computer can't calculate (±): 365! = 00
n! = 1.2.3....n grows too fast
e.g. 10! = 3,628,800

• Stirling's approximation:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 as $n \to \infty$.

• For
$$n = 365$$
, $k = 100$,
 $(k) = \frac{n!}{(n-k)!} n^{k} \approx \frac{\sqrt{2\pi n n^{n}}}{e^{n}} \cdot \frac{e^{n-k}}{\sqrt{2\pi(n-k)}(n-k)^{n-k}} \cdot \frac{1}{n^{k}}$
 $\frac{\sinh(y)}{\ln(y)} \left(\frac{n}{n-k} \right)^{n-k+\frac{1}{2}} e^{-k} \leftarrow \operatorname{computable}, \operatorname{gives}(k)$

-2-

-