Recall SI: E2 A permutation of nobjects = & ordered arrangement There are 1.2.3...n=n! permutations.

$$\int \frac{6!}{2} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{2} = 360$$

Revercounting correction : ignoring the order of 20's

Ex Same problem for word success?
7! Call permutation
3! 2! Rignoring the order of C's
Signoring the order of S's ____
Ex | In how many ways can Alisa invite 3 from her 7 friends
for her party?
Solution 1
The invitation list = word with 3 letters Y and 4 letter N:
Friend 1 2 3 4 5 6 7
Invited N Y N N Y N Y
of such words =
$$\frac{7!}{3! 4!} = 35$$
.
Fyoring the order of Y's and N's

-1----

Soluction 2:

$$\frac{\text{Soluction 2}}{\#(\text{ways to send invitations to 3 friends}) = 7.6.5}$$

$$\frac{1}{3!} = \frac{7.6.5.4.3.2.1}{3! \cdot 4.5.2.1} = \frac{7!}{3!4!} = 35.$$

• More generally: e.g. k friends e.g. n friends

$$\#(ways to choose k objects from n objects) = \frac{n!}{k!(n-k)!}$$

Def A combination is a way to choose an unordered
subset of k objects from a set of n objects.
The number of combinations equals
 $\binom{n}{k} := \frac{n!}{k!(n-k)!}$
and is called the Binomial coefficient "n choose k"
• Ex $\#(ways to choox 3 friends from 7) = \binom{7}{3} = 35$.

-2-