S1:E4
Recall SI:E2 A permutation of n objects $=\forall$ ordered arrangement
There are $1.2 .3 \cdots n=n$! permutations.
Ex: Now many different words can be made by rearranging the letters of the word DOCTOR?

$$
\text { I } \frac{6!^{a}}{2}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{2}=360
$$

Rovercounting correction: ignoring the order of 2 o's

Ex Same problem for word succESS?
$7!<$ all permutation
$\frac{7!2!}{3!}=420$
$\overline{3!2!}=420$ ignoring the order of C 's
cignoring the eider of S's I
$\stackrel{\text { Ex }}{=}$ In how many ways can Alisa invite 3 from her 7 friends for her party?

Solution 1
The invitation list $=$ word with 3 letters Y and 4 letter N:

$$
\begin{array}{llllllll}
\text { Friend } 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text { Invited? } & N & Y & N & N & Y & N & Y
\end{array}
$$

\# of such words $=\frac{7!}{\Gamma!4!}=35$.
ignoring the order of Y 's and N's

Solution 2 :
\#(ways to send invitations to 3 friends $)=\begin{array}{ccc}\downarrow \\ 7 \cdot 6 \cdot 5\end{array}$ Ignore the order of invitations \Rightarrow

$$
\frac{7 \cdot 6 \cdot 5}{3!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3!\cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{7!}{3!4!}=35
$$

- More generally: e.s.k friends eg.n friends \#(ways to choose k objects from n 'objects $)=\frac{n!}{k!(n-n)!}$ \Downarrow

Def A combination is a way to choose an unordered subset of k objects from a set of n objects. The number of combinations equals

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!}
$$

and is called the Binomial coefficient "n choose k "

- Ex \#(ways to cloox 3 friends from 7$)=\binom{7}{3}=35$.

