- Last episode:
binomial coefficient \#(ways to choose k from n objects $)=\frac{n!}{k!(n-k)!}=:\binom{n}{k}$
, $\left(\begin{array}{l}n \\ n \\ \uparrow\end{array}\right)=\frac{n!}{n!0!}=1$
invite all friends
This is why we set $0!=1$.
Ex An airline operates 7 daily flights NY \rightarrow LA Each flight can be late or on time, es.

Late on time
(a) Now many scenarios are possible in which 3 flights are late $\& 4$ are on time?

$$
\square\binom{7}{3}=\binom{7}{4}=35
$$

choose \uparrow which/ Plights are late equivalently, choose which flights are on time

More generally,
Prop (Symmetry) $\quad\binom{n}{k}=\binom{n}{n-k}$
i.e. the binomial coefficients are symmetric about $n / 2$:

(b) What if we require that no late flights are comequative?
(i.e. $L T L T T$ is not allowed)
line up the 4 on-time flights with spaces next to them:

$$
{ }_{\omega} T_{\omega} T_{\omega} T_{\omega} T_{v}
$$

Each space has room for $\leqslant 1$ late flight.

$$
\begin{aligned}
\Rightarrow \#(\text { scenarios }) & =\#(\text { ways to choose } 3 \text { from } 5 \text { spaces }) \\
& =\binom{5}{3}=10
\end{aligned}
$$

Ex (a) How many natural solutions doss the equation ie. $x, y \in \mathbb{N}=\{1,2,3, \ldots\}$ $x+y=5$ have?

$$
\left.\begin{array}{rl}
1+4 & =5 \\
2+3 & =5 \\
3+2 & =5 \\
4+1 & =5
\end{array}\right\} \Rightarrow 4 \text { solutions }
$$

(b) What about $x+y+z=6$?.g.

$$
\begin{aligned}
& 2+3+1=6 \\
& 1+4+1=6
\end{aligned}
$$

$\#($ sols $)=\#($ ways to choose 2 from $5 "+" s)=\binom{5}{2}=10$
Generally:
Thu The equation $x_{1}+x_{2}+\cdots+x_{k}=n$ has $\binom{n-1}{k-1}$ natural solutions.

Remark: if we want to count $2+3+1=6$ and $3+2+1=6$ as the same solution, $\#($ sols $)=$ "partitions" of n
No closed-form expression; see Young diagrams.

