$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{5} & =(x+y)(x+y)(x+y)(x+y)(x+y) \\
& =1 \cdot y^{5}+\binom{5}{1} x^{1} y^{4}+\binom{5}{2} x^{2} y^{3}+\binom{5}{3} x^{3} y^{2}+\binom{5}{4} x^{4} y^{1}+1 \cdot x^{5}
\end{aligned}
$$

choose 1 factor for x.... choose 3 factors for x \& the otter 4 for y the other 2 for y

$$
=y^{5}+5 x y^{4}+10 x^{2} y^{3}+10 x^{3} y^{2}+5 x y^{4}+x^{5}
$$

Generally:
BINOMIAL THEOREM $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

letting $x=y=1$ in B.T, we get
$\operatorname{COROLARA} \quad \sum_{k=0}^{n}\binom{n}{k}=2^{n} \quad$ Hard to prove directly
Alternative proof: both sides = \#ways to choose any subset of n friends for a party

Another identity:
Pascal's Rule $\forall n, k: \quad\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$

Prove directly (DIY)
Combinatorial proof
n friends
Leo $\underbrace{\text { Sandy } X_{n} \text { Isabel... }}_{n-1}$

II
\# (ways to invite k friends NOT including Coo) + \#(...includingleo)

$$
=\binom{n-1}{k}+\left(\begin{array}{c}
0 \\
n-1 \\
k-1
\end{array}\right) \text { is excluded }{ }^{6} \text { is already included }
$$

${ }^{1}$ white k-1 more
P.R yields a recursion to compute binomial coeffers:

Thus $(x+y)^{5}=y^{5}+5 x y^{4}+10 x^{2} y^{3}+10 x^{3} y^{2}+5 x y^{4}+x^{5}$

$$
(x+y)^{6}=\cdots \quad(D \mid Y)
$$

