S2:E2
OPERATIONS ON EVENTS
=set operations, interpreted in probability
Def Consider events $E, F \subset S^{\text {-sample space }}$ Venn Diagram:

$$
\text { - } E \subset F \text { if } \forall \mathscr{S} \in E, S \in F \text {. }
$$

"E implies F "

- $E=F$ if $E \subset F$ and $F C E$ Either both E,F occur
 or both don't.

$$
\begin{aligned}
& \text { - } E \cap F:=\{s \in S: s \in E \text { and } s \in F\} \\
& \text { intersection "E AND } F \text { occur" }
\end{aligned}
$$

- E, F are mutually exclusive, a.k.a. "disjoint", if if $E \cap F=\varnothing$.

$$
\text { EUF: }=\{s \in S: \quad s \in E \text { or } s \in F\}
$$

Union
"E OR F occur" (or both)

$$
\cdot E^{c}:=\{s \in S: s \notin E\}
$$

complement "E does NOT occur"

$$
\text { - } E \backslash F:=E \cap F^{c}=\{s \in S: s \in E \text { and } s \notin F\}
$$ difference "E occurs but not F "

Back to examples on p.1:

1. Flip coin twice. $S=\{\mu k, n T, T u, T T\}$

$$
\left.\begin{array}{l}
E=\text { "head once" } \\
F=\text { "tail once" }
\end{array}\right\} \Rightarrow E=F=\{T H, H T\}
$$

2. Record the time of first all call $S=[0,24)$

$$
\left.\begin{array}{l}
E=\text { "after 2pm" } \\
F=" \text { by } 3 \mathrm{pm} "
\end{array}\right\} \quad E \cap F=\text { "between } 2-3 \text { pm" }=(2,3]
$$

3. Toss 2 dice. $S=\{(i, j): i, j=1, \ldots, 6\}$

$$
\left.\begin{array}{l}
E=\text { "the sum of the dice } \geqslant 10^{"} \\
F=\text { "the sum is } \geqslant 53
\end{array}\right\} \Rightarrow E \subset F
$$

4. Record the sex of children in the family: $S=\{N, B, G, B B, B G, \ldots\}$ $E=$ "just two boys" $=\{B B\} ; \quad F=$ "just two girls" $=\{G a\}$
$E \cap F=\phi$, mutually exclusive
$E \cup F=\{B B, G G\}=$ "two children of same gender".

Remark For multiple events, notation:

$$
\begin{aligned}
& E_{1} \cap E_{2} \cap \cdots \cap E_{n}=\bigcap_{i=1}^{n} E_{i}=" \text { all } E_{i} \text { occur" } \\
& E_{1} \cup E_{2} \cup \ldots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=\text { "at least one } E_{i} \text { occurs" }
\end{aligned}
$$

Ex A student qualifies for financial ard if she passes both English and. Finance classes: $Q=E \cap F$
Ara is disqualified = she must have failed ether English (or) Finance or Goth.
Generally:

$$
\begin{aligned}
& Q^{c}=E^{c} \cup F^{c} \\
& \underbrace{\Perp} E^{c}=E^{c} \cup F^{c}
\end{aligned}
$$

TMM (De Morgan's laws) \forall events $E, F \in S$:
(a) $(E \cap F)^{c}=E^{c} \cup F^{c}$
(b) $(E \cup F)^{c}=E^{c} \cap F^{c}$

More generally:

$$
\begin{aligned}
& \left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c} \\
& \left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}
\end{aligned}
$$

Ex A coffee maker consists of n components. CM works \Leftrightarrow all n components work (E_{i})

$$
\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}
$$

cM fails \Leftrightarrow at least one component fairs

