THE AXIOMS OF PROBABILITY

\						
10/	10+	2	le.	a	sample	space.
The L	Lec	$\overline{}$	0		<i>(</i> '	V

A probability is an assignment of a number P(E) to each event ECS, which satisfies the following properties ("axioms"):

- 1. P(E) >0 YECS
- 2. P(s) = 1
- 3. If mutually exclusive events $E_1, E_2, ..., E_n$ (where n may be finite or ∞), $E_1 / E_3 / E_4$ $P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$ E_2 / E_4

Remarks 1. If n=00, this series is required to converge

- 2. Probability is a Runction P: 2 → [0,1]

 power
 set
- 3 Other functions that satisfy axioms 1 \$2:

 length, area, volume, mass; "Measure"

 percentage satisfies all axioms.

UNI PORM PROBABILITY

Det let S be a finite set. If all outcomes are equally likely, in i.e. P(151)=P(ft))

Pir called the uniform probability

Vs, t \(\in S \)

Proposition In this case, $P(E) = \frac{|E|}{|S|} \quad \forall \text{ event } ECS$

Proof.

• P is uniform => all outcomes must have prob = $\frac{1}{|S|}$

(Indeed,
$$1 = P(S) = P(U_{SES} \{S\}) = \sum_{s \in S} P(\{s\}) = N \cdot P(\{s\})$$
)

axiom 2

axiom 3

axiom 3

Hevent ECS

$$P(E) = P(SS) = \sum_{S \in E} P(SS) = \frac{(E)}{|S|} \cdot QED,$$

$$IEI + errors$$

Ex (a) Flip 2 coins, S= | HM, KT, TM, TT } all outcomes are equally likely $\Rightarrow P(\text{one head}) = P(\{\text{RT}, \text{TH}\}) = \frac{2}{4} = \frac{1}{2}$ (b) Choose 10 rats from 100 (=40 sizk, 60 kealthy) S= [all subsets of 10 rats] All selections are equally likely =) for E=4 4 sick 6 healthy) $P(E) = \frac{(E)}{(S)} = \frac{\binom{40}{4}\binom{60}{6}}{\binom{100}{5}} = 0.26$ Note: not all probabilities are uniform, e.g. Experiment = renting a Netflix series S={all Netflix series} P is NOT uniform, due to variation of preferences.

-3-