S2:E3

THE AXIOMS OF PROBABILITY

Def Let $S$ be a sample space.
A probability is an assignment of a number $P(E)$ to each event $E \subset S$, which satisfies the following properties ("axioms"):

1. $P(E) \geqslant 0 \quad \forall E \subset S$
2. $P(S)=1$
3. $\forall$ mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$ (where $n$ may le finite or $\infty$ ),

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$


"Additivity"
Remarks 1. If $n=\infty$, this series is required to converge
2. Probability is a function $P: 2^{s} \rightarrow[0,1]$ power
3. Other functions that satisfy axioms $1 \neq 2$ : length, area, volume, mass; percentage satisfies all axioms.

UNIFORM PROBABILITY
Def let $S$ be a finite set.
If all outcomes are equally likely, $c$ $P$ is called the uniform probability $\forall s, t \in S$ on s.

Proposition In this case,

$$
P(E)=\frac{|E|}{|S|} \quad \forall \text { event } E \subset S
$$

Proof.

- $P$ is uniform $\Rightarrow$ all outcomes must have prob $=\frac{1}{|S|}$
- $\forall$ event E CS

$$
\begin{aligned}
& \forall \text { event } E \subset S \\
& P(E)=P\left(\bigcup_{S \in E}\{s\}\right)=\underbrace{\sum_{s \in E}}_{|E|+\text { eras }} \underbrace{P(\{s\})}_{\text {each }=\frac{1}{|s|}}=\frac{|E|}{|S|} . \quad Q E D,
\end{aligned}
$$

Ex (a) Flip 2 coins, $S=\{\mathrm{kn}, \mathrm{kT}, \mathrm{T}, \mathrm{T}, \mathrm{T}\}$ all outcomes are equally likely

$$
\Rightarrow P(\text { one head })=P(\{x T, T x\})=\frac{2}{4}=\frac{1}{2}
$$

(b) Choose 10 rats from 100 ( $=40$ sinh 60 healthy)

$$
S=\{\text { all subset }\} \text { of } 10 \text { rats }\}
$$

All selections we equally likely $\Rightarrow$
for $E=\{4$ sick 6 healthy

$$
\begin{aligned}
& \text { fer } E=34 \text { sing } \\
& P(E)=\frac{(E)}{|S|}=\frac{\binom{40}{4}\binom{60}{6}}{\binom{100}{10}}=0.26
\end{aligned}
$$

Note: not all probabilities are uniform, egg.
Experiment = renting a Netflix series
$S=\{$ all Netflix series $\}$
$P$ is NOT uniform, due to variation of preferences.

