CONDITIONAL PROBABILITY
"Smokers are more likely to get cancer than non-smokers" is a statement about conditional probabilities.

Study: 360 people: $\quad P($ Cancer $)=\frac{8+16}{360} \approx 0.07$

	Cancer	No
Smoker	8	32
No	16	304

$$
\begin{aligned}
P(\text { Cancer } \mid \text { Smoke })= & \frac{8}{8+32}=0.2 \\
P(\text { Cancer } \mid \text { No smoke })= & \frac{16}{16+304}=0.05 \\
& 4 \times \text { higher }
\end{aligned}
$$

- Note calculation cebove:

$$
P\left(\text { Cancer }\left.\right|^{\triangleright} \text { Smoke }\right)=\frac{P(\text { Cancer } \cap \text { Smoke })}{P(\text { Smoke })}
$$

Def Consider events $E, F<S$ with $P(F)>0$.
The conditional probability of E given F is

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

we assume F holds

Remark F becomes \simeq a new probability space.

Ex Consider families with 2 children
(a) If the older child is a girl, what is the probability that $\underbrace{\text { both children are girls? }}_{E}$
$S=\{G G, G B, B G, B B\}$ (older first; all equally likely)

$$
\begin{aligned}
& F=\{G G, G B\}, \quad E=\{G G\} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 4}{2 / 4}=\frac{1}{2}
\end{aligned}
$$

(b) If at least one child is a girl, what is the probability that both children are girls?

$$
\begin{aligned}
& F=\{G G, G B, B G\}, \quad E=\{G G\} \\
& P(E \mid F)=\frac{1 / 4}{3 / 4}=\frac{1}{3}, \quad \text { Surprising }
\end{aligned}
$$

Ex 75% people live at least 70 years.
63% people live at least 80 years.
For a 70 y.0. person, what is the probability to live at least 10 more years?

$$
\begin{align*}
& P(E)=0.63, \quad P(F)=0.75 \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)} \overline{E C F} \frac{P(E)}{P(F)}=\frac{0.63}{0.75}=0.84
\end{align*}
$$

Ex On a given day, a typical person opens Netflix, with prob. 0.2 ; then eiker rents a movie with prob. 0.15 or closes Netflix with prob- 0.85 .
What is the probability that a person rents a Netflix movie on a given day?
rents a movie

$$
T P(E \cap F)=P(F) \cdot P(E \mid F)=0.2 \times 0.15=0.03
$$

a useful "multiplication rule"

