S3:E10

Secretary problem, a.k.a. Best prize problem

- We are presented with n prizes, in sequence.
- Upon seeing a prize, we must accept it (and end the game) or reject it (and move to the next prize). No going back.
- The only info we have ct \forall time is how the current prize compares to the prizes already seen.
- We want to pick the best prize. What shall we do?
- Strategy: reject the first k prizes;
accept the first one that is Better than those k.

Let's compute $P(E)$ and optimize k.

- Condition on the position of best prize:
$B_{i}=$ " i-th prize is the best".
LTD \Rightarrow

$$
P(E)=\sum_{i=1}^{n} \underbrace{P\left(E \mid B_{i}\right)}_{\|} \underbrace{P\left(B_{i}\right)}_{\frac{1}{n} \text { (all are equally likely) }}
$$

- $\forall i \leq k \quad P\left(E \mid B_{i}\right)=0$ (we reject the first k prizes)
- $\forall i>k$: assume B_{i} occurs, ie. $i-t h$ prize is the best.

We pick it iff all prizes $k+1, \ldots, i-1$ are worse than the first k. (Otherwise we lox it)
Thus, E occurs iff the best among the in prizes is among the first k.

-The latter happens with prob. $\frac{k}{i-1}$
(\forall i-1 positions equally likely)

$$
\begin{aligned}
& \Rightarrow P\left(E \mid B_{i}\right)=\frac{k}{i-1} \\
& \Rightarrow P(E)=\sum_{i=k+1}^{n} \frac{k}{i-1} \cdot \frac{1}{n}=\frac{1}{n} \sum_{i=k}^{n-1} \frac{k}{i} \\
& \approx \frac{k}{n} \int_{k}^{n-1} \frac{d x}{x}=\frac{k}{n} \ln \left(\frac{n-1}{k}\right)=\frac{k}{n} \ln \frac{n}{k}=-x \ln x
\end{aligned}
$$ where $x=k / n$

Maximize $\Rightarrow x=1 / e, P(\bar{E})=1 / e$
Ans: reject the first $\frac{n}{e}$ prizes, pick the first one better than these.
Probability to pick the best is $=1 / 0=0.37$
Remark: Optimal stopping \approx regardless of $n!!$

