S3:E10

Secretary problem, a.k.a. Best prize problem · We are presented with n prizes, in sequence. . Upon seeing a prize, we must accept it (and end the game) or reject it (and move to the next prize). No going Back. . The only info we have at I time is how the current prize compares to the prizes already seen. . We want to pick the best prize. What shall we do?

• Condition on the position of best prize :

$$B_{i} = \text{``i-th prize is the best''.}$$

$$LTP \Rightarrow$$

$$P(E) = \sum_{i=1}^{n} P(E|B_{i}) P(B_{i})$$

$$\prod_{i=1}^{n} (all are equally likely)$$
?

•
$$\forall i \leq k$$

 $P(E|B_i) = 0$ (we reject the first $k \text{ prizes}$)
• $\forall i > k$: assume B_i occurs, i.e. i.th prize is the best.
We pick it iff all prizes $k+1,..., l + are worse$
than the first k . (Otherwise we lox $\overline{+}$)
Thus, E occurs iff the best among the int prizes
 k is among the first k .
• $\frac{1}{1-1}$ is a the best
 $\frac{1}{1-1}$ is a mong the first k .
• $\frac{1}{1-1}$ is a mong the first k .
• $\frac{1}{1-1}$ is a mong the best
 $\frac{1}{1-1}$ is a first $\frac{1}{1-1}$.
 $P(E|B_i) = \frac{k}{1-1}$
 $\Rightarrow P(E|B_i) = \frac{k}{1-1}$
 $\Rightarrow P(E|B_i) = \frac{k}{1-1} = \frac{1}{n} \frac{2^{n-1}}{1-1} \frac{k}{n}$
 $\Rightarrow \frac{k}{1} \int_{1-1}^{n-1} \frac{dx}{x} = \frac{k}{n} \ln \left(\ln \frac{(n-1)}{k} \right) = \frac{k}{n} \ln \frac{n}{k} = -x \ln x$
where $x = \frac{1}{n}$
Maximize $\Rightarrow x = \frac{1}{2} k$, $P(E|E| = \frac{1}{2} k$.
 $\frac{4}{1-1}$ is reject the first $\frac{n}{2}$ prizes, pick the first one
better then these.
 $Probability is pick the best is $=\frac{1}{2} = \frac{2}{2} = \frac{2}{37}$.
Remark ; Optimal stopping.
 $-2$$