Ex (Monty Hall Problem)

- In a game show, you are given the choice of 3 doors. Behind one door is a car; behind the other two, goats.
- The host knows what is behind each door; you don't.
- You choose a door, say No. 1.
- The host opens another door, say No.3, and you see a goat.
- The host offers you to switch to Door No. 2. should you switch ?

- $C_{i}=$ "car behind door $i^{"}$
- Assumptions on the host behaviour: wants to keep the show going as long as possible Thus, after you pick door No. 1:
(a) $C_{1} \Rightarrow$ host opens door 2 or 3 at random (50-50)
(b) $C_{2} \Rightarrow$ host opens door 3
(c) $C_{3} \Rightarrow$ host opens door 2 .
- $D_{3}="$ host opens door $3 "$

$$
P\left(C_{1} \mid D_{3}\right)=\frac{\sqrt{P\left(D_{3} \mid C_{1}\right)} \frac{1 / 2(a)}{P\left(C_{1}\right)}}{P\left(D_{3}^{1 / 3}\right.}=\frac{1}{3}
$$

Hence, you should always switch, thereby doubling your chances to win.

- Paradox.
- Explanation. When you make your fist choice (door 1), there is $\frac{2}{3}$ probability that the car is behind the 2 unchosen dons:

- When the host reveals the goat behind one of the unclosen bors (3), prob. $2 / 3$ now rests on the other unchosen bor (2):

- Equivalent to the "Three prisoners problem"

