S3:E6
Ex (Finding your birthrate).
How many strangers do you need to ask to have a so-so chance to find someone with the same birthday as yours?
$E=\bigcup_{i=1}^{n} E_{i}$ where $E_{i}=$ "i'th stranger is your birthmute" E_{i} are independent, $P\left(E_{i}\right)=\frac{1}{d}$, where $d=365$.

$$
\begin{aligned}
P\left(E^{c}\right) & =P\left(\bigcap_{i=1}^{n} E_{i}^{c}\right) \quad(\text { de Morgan }) \\
& =\prod_{i=1}^{n} \underbrace{P\left(E_{i}^{c}\right)}_{\substack{\| 1-\frac{1}{d}}} \quad\binom{\text { stability of independence } \Rightarrow}{E_{i} \text { are ineep. }} \\
& =\left(1-\frac{1}{d}\right)^{n}=\left[\begin{array}{l}
\left.1-\frac{1}{d}\right)^{d}
\end{array}\right]_{\text {(since } \left.\lim _{d \rightarrow \infty}\left(1-\frac{1}{d}\right)^{d}=\frac{1}{d}\right)}^{(50-50 \text { chance) })}
\end{aligned}
$$

Solve for $n \Rightarrow$

$$
n=\frac{d}{\pi} \ln 2=253<\text { Answer. }
$$

Remark: the appouximation i very accurate: $n=253$ gives 0.5005 - 0.4995 chance.

