S3:E8

Ex Two players take turns flipping a coin. The first player to obtain a head wins. What is the prob. that the player who starts wins?

Condition on the first flip

$$
\begin{aligned}
& P(E)=\underbrace{P(E \mid H)}_{1} \underbrace{P(H)}_{\frac{1}{2}}+\underbrace{P(E \mid T)}_{\begin{array}{c}
\text { game resets, player }
\end{array}} \underbrace{P(T)}_{\frac{1}{\frac{1}{2}}}
\end{aligned}
$$

game resets, player 2 starts

$$
P(E \mid T)=P(\text { the player who starts loses })
$$

$$
=1-P(E)
$$

$$
\Rightarrow P(E)=\frac{1}{2}+(1-P(E)) \cdot \frac{1}{2}
$$

Solving gives $P(E)=2 / 3$

Ex (The problem of points)
Teams A and B play against each other continually. The first team that wins 5 games wins the tournament. ( $\Rightarrow \leq 9$ games total)
Team $A$ has prob. 0.6 to win $\forall$ given game, independently. What is the prob. that team $A$ wins the tournament?

A wins the tournament if
$E_{5,5}=\{A$ wins 5 games before $B$ wins 5 games \} Condition on the outcome of $1^{\text {st }}$ game:

$$
\begin{aligned}
P\left(E_{5,5}\right)= & \underbrace{P\left(E_{5,5} \mid A_{1}\right)}_{\|} \underbrace{P\left(A_{1}\right)}_{0.6}+\underbrace{P\left(E_{5,5} \mid B_{1}\right)}_{\|} \underbrace{P\left(B_{1}\right)}_{\|} \\
& P\left(E_{4,5}\right) \text {, prob. that A wins } \quad P\left(E_{5,4}\right) \text {, prob, that A wins } \\
& 4 \text { games before Bwins5 } \quad 5 \text { games before B wins } 4
\end{aligned}
$$

$$
\Rightarrow P\left(E_{5,5}\right)=0.6 P\left(E_{4,5}\right)+0.4 P\left(E_{5,4}\right)
$$

More generally, denoting $P_{n, m}=P\left(E_{n, m}\right)$, we get

$$
\left\{\begin{array}{l}
P_{n, m}=0.6 P_{n-1, m}+0.4 P_{n, m-1} \\
P_{n, 0}=0 ; \quad P_{0, m}=1
\end{array}\right\} \forall 1 \leq n, m \leq 5
$$

- System of linear equations. Canbe solved computationally (Matlab), or by induction, or even analytically (Pascal D)
- In particular,

$$
P_{5,5}=0,73
$$

