SB: Eq

- Simple random walk:
 A particle is placed at k.
Each second, moves 1 step to the right or to the left independently with prob $1 / 2$ each.
Ex. 1 (Gambler's Ruin)
What is probability of reaching n before reaching 0 ?

Condition on $1^{\text {st }}$ step, L or R :

$$
\begin{aligned}
& P\left(E_{k}\right)=P\left(E_{k} \mid C\right) P(L)+P\left(E_{k} \mid R\right) P(R) \\
&=P\left(E_{k-1}\right) \cdot \frac{1}{2}+P\left(E_{k+1}\right) \cdot \frac{1}{2} \\
& \text { walk "resets" } \\
& \text { at } k-1 \text { alk "resets" } k+1
\end{aligned}
$$

Denoting $P_{k}=P\left(E_{k}\right)$, we obtain

$$
\left\{\begin{array}{l}
P_{k}=\frac{1}{2}\left(P_{k-1}+P_{k+1}\right), k=1, \ldots, n-1 \\
P_{0}=0 ; \quad P_{n}=1
\end{array}\right.
$$

$n+1$ linear equations in $n+1$ unknowns. Solve \rightarrow

$$
p_{k}=\frac{k}{n}
$$

Cobviously, it is a solution:

- Remark, Finance: $0=$ bankrupay $n=$ pay off
$k=$ initial capital

Ex. Teams A and B, who have equal strength, play against each other continually.
1 point is awarded to the winner of each game. The first team that leads by 5 points wins the tournament Team A currently leads by 1 pt.
What is the prob. that team A wins the tournament?

- Assumptions: outcomes of the games are independent, equally likely win/ lose
lead of A

- The "lead of A " is doing a simple random walk, starting at 1

A wins tournament \Leftrightarrow starting at 1 , the lead reaches 5 before -5 .

- By shifting, \Longleftrightarrow starting at 6 , the lead reaches 10 before 0 . $+5$
Prom the previous problem, this probability $=\frac{6}{10}=0.6$

Read more on random walk

