S4:E2

- Recall $(S 4: E 1)$: a r.v. X is an assignment: outcome \mapsto number ie. X is a function $S \rightarrow \mathbb{R}$.

Examples: (a) $X=\#$ heads in 3 coin flips

$$
S=\{T T T, T T n, \text { TnT, Tин, HT, итн, инт, иии }\}
$$

$$
x: \begin{array}{cccccccc}
\downarrow & \downarrow & 1 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 1 & 1 & 2 & 1 & 2 & 2 & 3
\end{array}
$$

(6) $X=$ age of a randomly chosen person $S=\{$ people $3 ; \quad x$: person \rightarrow his/her age
(c) $X=\#$ children in a randonely chosen fancily $S=\{$ families $\} \quad X:$ family $\mapsto \#$ children

- Distribution of $X=$ knowledge of what values X takes, with what probabilities
If X is a discrete riv (\#values finite or countable), distribution is captured by:
probability mass function (prof)

$$
\begin{aligned}
P(x) & =P\{X=x\} \\
& =P\{s+s: X(s)=x\}
\end{aligned}
$$

Ex (a): $p(0)=\frac{1}{8}, p(1)=\frac{3}{8}, \quad p(2)=\frac{3}{8}, \quad p(3)=\frac{1}{8}$

Today: Expected value, a.k.a. "expectation", "mean, "average"

- a single \# that best describes X
- Ex Study of 836 families.

502 families: no children
140 : 1 child
127
67
What is the average number of children in a family?

$$
\text { Average }=\frac{\text { total \#children }}{\text { total \#families }}=\frac{0.502+1.140+2.127+3.67}{836}=
$$

- Probabilistic view:
experiment = choose a family at random (uniform distribution) r.v. $X=$ \#children in this family
pul: $\quad p(0)=\frac{502}{836}, p(1)=\frac{140}{836}, p(2)=\frac{127}{836}, \quad p(3)=\frac{67}{836}$
\Rightarrow Average $=0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)+3 \cdot p(3)=: \mathbb{E}[x]$
- Def The expected value of a discrete r.a. X is

$$
E[X]=\sum_{x} x P\{X=x\}=\sum_{i} x_{i} p\left(x_{i}\right)
$$

Intuition:

- if all N values are equally likely $\Rightarrow P\left(x_{i}\right)=\frac{1}{N}$ $\Rightarrow E[x]=\frac{1}{N} \sum_{i=1}^{N} x_{i}$, arithmetic mean
- In general, $\sum_{i=1}^{N} x_{i} \frac{\rho\left(x_{i}\right)}{c}$ is a weighted average more weight \rightarrow more likely values.
- \simeq center of mass (partides at x_{i}, weights $p\left(x_{i}\right)$

Ex $\quad x=\#$ heads in 3 coin flips

$$
\begin{aligned}
& p(0)=\frac{1}{8}, \quad p(1)=\frac{3}{8}, p(2)=\frac{3}{8}, p(3)=\frac{1}{8} \\
& E[x]=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=1 \cdot 5
\end{aligned}
$$

Ex (lottery) 6 out of 49 (in any order)
All 6 correct \Rightarrow prize $=\$ 1,200,000$
5 correct \Rightarrow prize $=\$ 800$
4 correct \Rightarrow prize $=\$ 35$

≤ 3 correct \Rightarrow no prize.
Expected winnings =?
pouf: $p(1,200,300)=p\{$ all 6 correct $\}=\frac{1}{\binom{4 a}{6}}$

$$
\begin{aligned}
& p(800)=p\{5 \text { correct, } 1 \text { not }\}=\frac{\binom{6}{5}\binom{43}{1}}{\binom{49}{6}} \\
& p(35)=p\{4 \text { correct, } 2 \text { not }\}=\frac{\binom{6}{4}\binom{43}{2}}{\binom{49}{6}} \\
& p(0)=1-p(1,200,000)-p(800)-p(35) .
\end{aligned}
$$

$$
\begin{aligned}
E[x] & =1,200,000 \cdot p(1,200,000)+800 \cdot p(800)+35 \cdot p(35)+0 \cdot p(0) \\
& \approx 0.13 .
\end{aligned}
$$

Ans: 134. \leftarrow would be a fair price for a buttery tet.

