S4:E3

PROPERTIES OF EXPECTATION
Prop $\mathbb{E}(a)=a$ if $a \in \mathbb{R}$ is a constant.
Proof: $X=a$ takes value a with prob. $1 \Rightarrow E[X]=1 \cdot a=a, Q E D$
$T \operatorname{TM}$ (linearity) $\quad \mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$
\forall riv's X, Y and \forall constants $a, b \in \mathbb{R}$

Proof for discrete riv's.
If X takes values x_{i} with prob. Pi
and Y takes values y_{j} with prob. q_{j},
then $a X+b Y$ fakes values $a x_{i}+b y_{j}$ with prob. $P_{i j}=P\left(X=x_{i}, Y=y_{i}\right\}$
(possibly repeated (Ok in the def.)

$$
\left.\begin{array}{rl}
\mathbb{E}[X+Y) & =\sum_{i, j}\left(a x_{i}+b y_{j}\right) P_{i j}=\sum_{i} a_{i} x_{i} \\
& =a \sum_{i} x_{i} p_{i}+b \sum_{j} y_{i} q_{j} \quad \sum_{P_{i}}^{\left(P_{i}\right)}
\end{array}\right) \sum_{p_{i}}^{\sum_{j} b_{j} y_{j}} \underbrace{\left(\sum_{i} P_{i j}\right)}_{q_{j}})
$$

By induction \Rightarrow
$\left.\operatorname{Cor} \mathbb{E}\left(\sum_{i} x_{i}\right]=\sum_{i} \mathbb{E} \int x_{i}\right)$
\#heads in $\operatorname{feip} \mid \in\{0,1\}$
Ex $X=\#$ heads in 3 coin flips $=X_{1}+x_{2}+x_{3}$

$$
\begin{array}{rlrl}
\mathbb{E}[x] & =\mathbb{E}\left[x_{1}\right]+\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{3}\right] . & \mathbb{E}\left[x_{i}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} \\
& =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1.5 & &
\end{array}
$$

Ex (St. Petersburg Paradox)
The initial stake (money in the pot) is \$2.
\rightarrow The player tosses a form coin.
If $T \Rightarrow$ game ends, the player wins whatever is in the pot. If $\mathrm{H} \Rightarrow$ stake doubler, game continues.

What would be a fair price to pay the casino for entering this game?
$X=$ player's winnings.

$$
\begin{align*}
& p(2)=1 / 2, \quad p(4)=1 / 4, \cdots \\
& E[x]=2 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}+8 \cdot \frac{1}{8}+\cdots=
\end{align*}
$$

$\left.\begin{array}{l|c|c}\text { Tosses } & \text { Winnings } \$ & \text { Prob. } \\ \hline \text { T } & 2 & 1 / 2 \\ \text { HT } & 4 & 1 / 4 \\ \text { BHT } & 8 & 1 / 8 \\ \text { KnT } & 16 & 1 / 16\end{array}\right]^{1 / 2}$

Aus: \forall price.
Remarks: : Volatility, financial bubbles.

- Median is more stable. Med $(x)=M$ if

$$
P\{x \leq \mu\} \geq \frac{1}{2}, \quad P\{x \geq \mu\} \geq \frac{1}{2}
$$

- In the St.Pete's paradox, $\operatorname{Med}(x) \in[2,4]$

