Ex In a group of n peode, each person is sick with prob.p, independently. What is the expected \# of sick people?

$$
\begin{array}{llll}
\hline & & & 11 \\
\text { son } & & & \times \\
+ & i s & \text { sick }
\end{array}
$$

$$
E\left(x_{i}\right)=1 \cdot p+0 \cdot(1-p)=p
$$

$$
E(x)=n p
$$

Ex (Group Testing) Need to test n people for a disease (ex: Syphilis in wwII soldiers). $\quad P=\mathbb{P}\{$ test is positive $\}$.

Method 1 : test everyone ($\Rightarrow n$ tests) Expensive
Method 2: mix the samples of k people, test the mix.
If test negative \Rightarrow no more tests needed $(\Rightarrow 1$ test)
If positive \Rightarrow test al k people individually $(\Rightarrow k+1$ test

- Repeat far next k people, etc.

Expected \# tests in Method $2=$?

$$
x=x_{1}+\cdots+x_{n / k}
$$

where $X_{i}=\#($ tests needed for group $i) \in\{1, k+1\}$.
$\mathbb{P}\left\{x_{i}=1\right\}=\mathbb{P}\{$ all k people are negative $\}=(1-p)^{k} \quad$ (independent 20)

$$
\begin{aligned}
& \Rightarrow \mathbb{P}\left\{X_{i}=k+1\right\}=1-(1-p)^{k} . \\
& \Rightarrow \mathbb{E}\left(X_{i}\right)=1 \cdot(1-p)^{k}+(k+1)\left[1-(1-p)^{k}\right]=1+k\left[1-(1-p)^{k}\right] \quad \forall i \\
& \Rightarrow \mathbb{E}(X)=\sum_{i=1}^{n / k} \mathbb{E}\left[X_{i}\right]=\frac{n}{k} \mathbb{E}\left[X_{i}\right)=n\left[\frac{1}{k}+1-(1-p)^{k}\right] \in \text { Exact answer. }
\end{aligned}
$$

- Optimize in k? Simplify first:

Bernoulli inequality: $(1-p)^{k} \geqslant 1-p k \Rightarrow \mathbb{E}(x) \leq n\left(\frac{1}{k}+p k\right)$
Minimize in k. Optimal choice: $k=1 / \sqrt{p} \Rightarrow$

$$
\mathbb{E}[x] \leqslant 2 n \sqrt{p} \ll n \text { for small } p \text {. }
$$

- For example, if $n=100,000, p=10^{-4}$ (On average, up $=10$ sick) $\Rightarrow k=100, E(x) \leq 2,000$ tests $\ll 100,000$ in Method 1.

Note: Multistage $\Rightarrow O\left(n p \log \frac{1}{p}\right)$: almost achieves lower bd of np.

