S4:E5
Number of cycles in a random permutation

- Recall: permutation $=$ a rearrangement of n distinct objects. There are n ! permutations ($S_{1: E 2}$)
- \forall permutation breaks down into cycles.

For example:
(Q) What is $E \#\left(\right.$ (eydes) in a $\frac{\text { random permutation ? }}{T}$
drawn from the set of all $n!$ permutations with uniform probability.

- Intuition: $1^{\text {th }}$ cycle has length $\sim n$ (e.g. $n / 2$), next $n / n, \ldots \Rightarrow \log n$.
- The The expected \# of cycles in a random permutation of n elements is

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+0.58 \quad \text { (harmonic series) }
$$

Proof. To each element in a cycle of length k, assign weight $:=1 / k$.
Sum of all weights $=\#$ cycles.
E.S, here sum=

- Formally, let
$Y_{j}:=$ length of the cycle the element j is in;

$$
X=\sum_{j=1}^{n} \frac{1}{Y_{j}}
$$

linearity $\Rightarrow E[X]=\sum_{j=1}^{n} \underbrace{E\left[\frac{1}{Y_{j}}\right]}_{T}=n \cdot \underbrace{E\left[\frac{1}{Y_{1}}\right]}_{k}$
all equal by symmetry?

$$
E\left(\frac{1}{y_{1}}\right]=\sum_{k=1}^{n} \frac{1}{k} \underbrace{p\left\{y_{1}=k\right\}}_{11}
$$

$P\{$ element 1 is in a cycle of length $k\}=$?

- $P\{1$ is in a cycle of length 1$\}=\frac{1}{n}$

$$
\text { choices of } \pi(1) \neq 12 \quad \pi(1)
$$

$P\{1$ is in a cycle of length 2$\}=\frac{n-1}{n(n-1)}=\frac{1}{n}$

$$
\text { n choices of } \pi(1) \quad a_{n-1} \text { choices of } \pi(\pi(1))=\pi(1)
$$

$P\{1$ is in a cycle of length $k\}=\frac{1}{n}$ (Dry)

$$
\Rightarrow E\left[\frac{1}{y_{1}}\right]=\sum_{k=1}^{n} \frac{1}{k} \cdot \frac{1}{n} \Rightarrow E[x]=\sum_{k=1}^{n} \frac{1}{k} \quad \text { QED }
$$

