Morse theory and stable pairs

Richard A. Wentworth

UNIVERSITY OF MARYLAND

SCGAS 2010
Joint with

Georgios Daskalopoulos (Brown University)
Jonathan Weitsman (Northeastern University)
Graeme Wilkin (University of Colorado)
Outline

1. Introduction
2. Cohomology of symplectic quotients
3. Approach in a singular setting
Outline

1 Introduction

2 Cohomology of symplectic quotients

3 Approach in a singular setting
Cohomology of Kähler and hyperKähler quotients

The goal is to compute the equivariant cohomology of symplectic (Kähler or hyperKähler) reductions.

By the Kempf-Ness, Guillemin-Sternberg theorem, examples arise in geometric invariant theory.

Kirwan, Atiyah-Bott: In the symplectic case there is a “perfect” Morse stratification.

HyperKähler case still unknown.
Infinite dimensional examples:

- Higgs bundles (Hitchin)
- Stable pairs (Bradlow)
- Quiver varieties (Nakajima)

These involve symplectic reduction in the presence of singularities.

Key points:

- this poses no (additional) analytic difficulties.
- Singularities can cause the Morse stratification to lose “perfection.”
- Computations of cohomology are (sometimes) still possible.
Application to representation varieties

- M = a closed Riemann surface $g \geq 2$
- $\pi = \pi_1(M, \ast)$
- G = a compact connected Lie group
- $G^\mathbb{C}$ = its complexification (e.g. $G = U(n)$, $G^\mathbb{C} = GL(n, \mathbb{C})$)
- Representation varieties:
 \[
 \text{Hom}(\pi, G)/G \sim \text{moduli of } G\text{-bundles}
 \]
 \[
 \text{Hom}(\pi, G^\mathbb{C})//G^\mathbb{C} \sim \text{moduli of } G\text{-Higgs bundles}
 \]
Theorem (Daskalopoulos-Weitsman-Wentworth-Wilkin '09)

The Poincaré polynomial is given by

\[
P_t^{SL(2,\mathbb{C})}(\text{Hom}(\pi, SL(2, \mathbb{C}))) = \frac{(1 + t^3)^{2g} - (1 + t)^{2g} t^{2g+2}}{(1 - t^2)(1 - t^4)}
\]

\[
- t^{4g-4} + \frac{t^{2g+2}(1 + t)^{2g}}{(1 - t^2)(1 - t^4)} + \frac{(1 - t)^{2g} t^{4g-4}}{4(1 + t^2)}
\]

\[
+ \frac{(1 + t)^{2g} t^{4g-4}}{2(1 - t^2)} \left(\frac{2g}{t + 1} + \frac{1}{t^2 - 1} - \frac{1}{2} + (3 - 2g) \right)
\]

\[
+ \frac{1}{2} (2^{2g} - 1) t^{4g-4} \left((1 + t)^{2g-2} + (1 - t)^{2g-2} - 2 \right)
\]
Introduction

Cohomology of symplectic quotients

Approach in a singular setting

Outline

1 Introduction

2 Cohomology of symplectic quotients

3 Approach in a singular setting
Symplectic reduction

- \((X, \omega)\) symplectic manifold (compact)
- \(G\) compact, connected Lie group, acting symplectically
- \(\mu : X \rightarrow g^*\) a moment map (\(d\mu^\xi(\cdot) = \omega(\xi^\# , \cdot)\))
- the Marsden-Weinstein quotient \(\mu^{-1}(0)/G\) is a symplectic variety
- What is the cohomology of \(\mu^{-1}(0)/G\)?
Example

- Take S^2 with the action of S^1 by rotation in the xy-plane.
- A moment map is given by the height:
 \[\mu(x, y, z) = z + \text{const}. \]

- If $\mu = z$, then $\mu^{-1}(0)$ is the equator with a free action of S^1.
- If $\mu = z + 1$, then $\mu^{-1}(0)$ is a point with a trivial S^1 action.
- In both cases, $\mu^{-1}(0)/S^1$ is a point.
Equivariant cohomology

- Z topological space with an action by G
- Classifying space: $EG \to BG$ is a contractible, principal G-bundle
- Equivariant cohomology: $H^*_G(Z) = H^*(Z \times_G EG)$
- If the action is free: $H^*_G(Z) = H^*(Z/G)$
- If the action is trivial: $H^*_G(Z) = H^*(Z) \otimes H^*(BG)$
Perfect equivariant Morse theory

- S^1 acts freely on the sphere S^∞, so $BS^1 = \mathbb{C}P^\infty$
- Therefore $P_t(BS^1) = 1 + t^2 + t^4 + \cdots = \frac{1}{1 - t^2}$
- Example of the sphere:

$$P_t^{S^1}(S^2) \cong P_t(H^*(S^2) \otimes H^*(BS^1)) = \frac{1 + t^2}{1 - t^2}$$

- Sum over critical points of $f = \mu^2$:

$$P_t^{S^1}(S^2) = \sum_{p_j \text{ crit. pt.}} t^{\lambda_j} P_t^{S^1}(p_j)$$
Example

- \(f = \mu^2, \mu = z \): two critical points of index 2, plus the minimum:

 \[
 1 + \frac{t^2}{1 - t^2} + \frac{t^2}{1 - t^2} = \frac{1 + t^2}{1 - t^2}
 \]

- \(f = \mu^2, \mu = z + 1 \): two critical points, one of index 2 and one of index zero:

 \[
 \frac{1}{1 - t^2} + \frac{t^2}{1 - t^2} = \frac{1 + t^2}{1 - t^2}
 \]
For the general case, study the gradient flow $f = \|\mu\|^2$.

Critical sets η_β are characterized in terms of isotropy in G.

Gradient flow \leadsto smooth stratification $X = \bigcup_{\beta \in I} S_\beta$; with normal bundles ν_β.

The corresponding long exact sequence splits

$$\cdots \longrightarrow H_G^*(S_\beta, \bigcup_{\alpha < \beta} S_\alpha) \longrightarrow H_G^*(S_\beta) \longrightarrow H_G^*(\bigcup_{\alpha < \beta} S_\alpha) \longrightarrow \cdots$$

Compute change at each step from $H_G^*(S_\beta, \bigcup_{\alpha < \beta} S_\alpha)$.
Two key steps

- **Morse-Bott Lemma:**

 \[H^*_G(S_\beta, \cup_{\alpha<\beta} S_\alpha) \cong H^*_G(\nu_\beta, \nu_\beta \setminus \{0\}) \cong H^*_{\lambda_\beta}(\eta_\beta) \]

- **Atiyah-Bott Lemma:** criterion for multiplication by the equivariant Euler class to be injective.

\[\cdots \longrightarrow H^p_G(S_\beta, \cup_{\alpha<\beta} S_\alpha) \longrightarrow H^p_G(S_\beta) \longrightarrow \cdots \]

\[\downarrow \cong \downarrow \]

\[H^p_G(\nu_\beta, \nu_\beta \setminus \{0\}) \longrightarrow H^p_G(\eta_\beta) \]
Perfect equivariant Morse theory

Theorem (Kirwan, Atiyah-Bott)

\[P^G_t(\mu^{-1}(0)) = P^G_t(X) - \sum_{\beta} t^{\lambda_\beta} P^G_t(\eta_\beta) \]

Theorem (Kirwan surjectivity)

The map on cohomology

\[H^*_G(X) \longrightarrow H^*_G(\mu^{-1}(0)) \]

induced from inclusion \(\mu^{-1}(0) \hookrightarrow X \) is surjective.
Vector bundles on Riemann surfaces

- M a Riemann surface.
- $\mathcal{A} = \{\text{unitary connections } A \text{ on hermitian bundle } E \to M\}$
- $\mathcal{G} = \text{gauge group of unitary endomorphisms of } E$.
- $\mu : \mathcal{A} \to \text{Lie}(\mathcal{G})$ is given by $A \mapsto F_A$
- $\|\mu\|^2 = \text{Yang-Mills functional}$
Minimum is the space of projectively flat connections (i.e. representation variety)

\[\sqrt{-1} * F_A = \text{const.} \cdot 1 \]

The flow converges and the Morse stratification is smooth (Daskalopoulos)

Higher critical sets correspond to split Yang-Mills connections, i.e. representations to smaller groups. For example, \(E = L_1 \oplus L_2, \, d = \deg L_1 > \deg L_2 \):

\[\eta_d = \text{Jac}(M) \times \text{Jac}(M) \]

Morse-Bott lemma: Negative directions given by \(H^{0,1}(L_1^* \otimes L_2); \lambda_d = \text{dim is constant.} \)
Theorem (Atiyah-Bott, Daskalopoulos)

\[
P^\text{SU}(2)_t(\text{Hom}(\pi, \text{SU}(2))) = P(BG) - \sum_{d=0}^{\infty} t^{\lambda_d} P_t^{S^1}(\text{Jac}_d(M))
\]

\[
= \frac{(1 + t^3)^{2g} - t^{2g+2}(1 + t)^{2g}}{(1 - t^2)(1 - t^4)}
\]
Outline

1. Introduction
2. Cohomology of symplectic quotients
3. Approach in a singular setting
Holomorphic pairs

- $\mathcal{B}^{pairs} = \{(A, \Phi) : \Phi \in \Omega^0(E), \bar{\partial} A \Phi = 0\}$
- Higher rank version of $\text{Sym}^d(C)$
- Moduli space of Bradlow pairs corresponds to solutions of the τ-vortex equations:
 \[
 \sqrt{-1} * F_A + \Phi \Phi^* = \tau \cdot I
 \]
- This is the moment map for the action on $\mathcal{B}^{pairs} \subset A \times \Omega^0(E)$.

Wentworth Morse theory and stable pairs
Higgs bundles

- $\mathcal{B}^{\text{higgs}} = \{(A, \Phi) : \Phi \in \Omega^{1,0}(\text{End } E), \bar{\partial}_A \Phi = 0\}$
- Dimensional reduction of anti-self dual equations.
- Moduli space corresponds to solutions of the Hitchin equations:
 \[F_A + [\Phi, \Phi^*] = 0 \]
- Homeomorphic to the space of flat $GL(n, \mathbb{C})$ connections (Corlette-Donaldson).
- Hyperkähler structure.

Wentworth

Morse theory and stable pairs
Singularities

- Singularities because of the jump in \(\dim \ker \bar{\partial}_A \).
- Kuranishi model: \(\{ \text{Slice} \} \hookrightarrow H^1(\text{deformation complex}) \)
- Negative directions: \(\nu_\beta \) is the intersection of negative directions with the image of the slice.
- Morse-Bott isomorphism: Need to define a deformation retraction.
Critical Higgs bundle

- $E = L_1 \oplus L_2$, $A = A_1 \oplus A_2$, $\Phi = \begin{pmatrix} \Phi_1 & 0 \\ 0 & \Phi_2 \end{pmatrix}$
- Negative directions ν: (a, φ) strictly lower triangular.

\[a \in H^{0,1}(L_1^* \otimes L_2), \quad \varphi \in H^{1,0}(L_1^* \otimes L_2) \]

- $\deg(L_1^* \otimes L_2) < 0$
- $\deg(L_1^* \otimes L_2 \otimes K_M)$ is not necessarily negative
- Can still prove $H^*_G(X_d, X_{d-1}) \simeq H^*_G(\nu_d, \nu_d \setminus \{0\})$
Critical pair

- The set of pairs \((A, 0)\), where \(A\) is minimal Yang-Mills is a critical set of \(B_{pairs}\).
- \(\nu = H^0(E)\)
- If \(d > 4g - 4\), then \(H^0(E)\) is constant in dimension, and the Morse-Bott lemma holds.
- If \(d \leq 4g - 4\), \(H^0(E)\) jumps in dimension; describes Brill-Noether loci. Can still compute the contribution from this critical set.
Theorem (Daskalopoulos-Weitsman-Wentworth-Wilkin)

For the case of Higgs bundles, Kirwan surjectivity holds for $GL(2, \mathbb{C})$ but fails for $SL(2, \mathbb{C})$.

Theorem (Wentworth-Wilkin)

For stable pairs, Kirwan surjectivity holds, even though the Morse stratification fails to be perfect.
Theorem (MacDonald)

The embedding $\text{Sym}^d M \hookrightarrow \text{Sym}^{d+1} M$ *of symmetric products of Riemann surfaces induces a surjection in cohomology.*

Theorem (Wentworth-Wilkin)

The same result holds for rank 2 semistable pairs.

These are important in showing splitting of the long exact sequences.
Conclusion

- More examples, general construction?
- Proof of the Morse-Bott lemma in general? (Kuranishi model)
- Hyperkähler reduction using the sum of the squares of the moment map?
- Finite dimensional hyperkähler example where Kirwan surjectivity fails?