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Abstract

Recently Altuğ and Chen proposed a cryptographic construction in-
volving the isogeny graph of elliptic curves over Z/NZ with composite N .
In this talk, we will summarize their construction and mention some of
the open problems related to the security of cryptosystems based on this
construction.

1 Goal

The goal is to find a group G such that we can easily multiply, but not invert.
We want to support the following functionality:

encode (private): Given x ∈ G, output an encoding e(x).

compose (public): Given e(x), e(y), output e(xy).

equivalence (public): Given e(x), e(y), determine if x = y.

We require the following to be computationally hard:

inversion (hard) Given e(x), output e
(
x−1

)
.

Remark 1.1. A related problem to inversion is cancellation: Given e(x) and
e(xy), output e(y). If you can solve one of cancellation or inversion for all
inputs, then you can solve the other. However, in the construction below, the
cancellation problem will sometimes be easy because the group operation will
be represented by concatenation of encodings. This does not seem to affect the
difficulty of the inversion problem.

2 Implementation with Isogenies

Choose two large primes p and q. Set N = pq. Choose two elliptic curves
E0,p/Fp and E0,q/Fq such that

EndFp
(E0,p) ∼= EndFq

(E0,q) ∼= O,
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where O is some pre-specified order in an imaginary quadratic field. Let j0 ∈
Z/NZ be the output of the Chinese remainder theorem applied to j(E0,p) and
j(E0,q). Our groupG will be the class groupG = Cl(O). The public information
is (N, j0). Some auxiliary data will also be made public to support composition
(see below).

Remark 2.1. The order O, its class group structure, class number, and the
factorization of N are all private.

Our implementation is as follows:

encode (private): Given an ideal I of O, we write I as a product of small
ideals1 ai with coprime norm and coprime to N (being small should au-
tomatically force them to be coprime to N , i.e. ideals whose norm is
polynomial in the security parameter), so I =

∏t
i=1 a

ei
i . For each i, we

have a ladder (j0 = j0,i, j1,i, . . . , jei,i) where jk,i = ai ∗ jk−1,i. The action
of the class group on j-invariants in Z/NZ is computed as by the usual
action over Z/pZ and Z/qZ, and the results are combined via the Chinese
remainder theorem. Let Li denote the ladder Li = (j0,i, . . . , jei,i). The
encoding e(I) is given by a list of tuples

e(I) = {(Norm(ai), Li)}i=1,...,t

equivalence (public): Given the encodings e(I) and e(J ), we want to deter-
mine whether I ≡ J in Cl(O). It is sufficient to show that, given e(I),
we can compute I ∗ j0 using only public information.

Suppose a1, a2 are ideals with coprime norms n1, n2 respectively. Then
(a1a2)∗ j0 is the root of the linear polynomial gcd(Φn2

(a1 ∗ j0, x),Φn1
(a2 ∗

j0, x)) in Z/NZ.2 Here Φn is the usual modular polynomial. The compu-
tation can be done in Z/NZ because Φn(x, y) ∈ Z[x, y].

Recall that an encoding e(I) is a list of tuples (Norm ai, Li) for i = 1, . . . , t,
where I =

∏t
i=1 a

ei
i . We also required that Norm ai was small. Write

Li = (j0,i, . . . , jei,i). Here jk,i = aki ∗ j0. Our goal is to compute I ∗ j0.

Let b1, b2 be two ideals dividing I. Suppose that there is some pair of
distinct indices i, j such that b1ai = b2aj . The operation above says that
if we know b1 ∗ j0 and b2 ∗ j0, then we can compute b1ai ∗ j0 = b2aj ∗ j0.
Essentially we are just computing

gcd
(
ΦNorm ai(b1 ∗ j0, x),ΦNorm aj (b2 ∗ j0, x)

)
over Z/NZ. Since we know aki ∗ j0 for all 0 ≤ k ≤ ei, it is possible to
compute I ∗ j0. This takes roughly O(

∏
ei) gcd computations.

1We also require these ideals correspond to cyclic isogenies, i.e. the induced isogeny j →
a ∗ j is cyclic.

2To see that the polynomial is linear, notice that there is a unique subgroup of E0,p of
degree n1n2 containing both the kernel of E0,p → a1 ∗E0,p and the kernel of E0,p → a2 ∗E0,p.
The same holds for E0,q .
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Example 2.2. Suppose I = a31a
2
2. Then we start with a1∗j0, a21∗j0, a31∗j0

and a2 ∗ j0, a22 ∗ j0. First we compute a1a2 ∗ j0 using a1 ∗ j0 and a2 ∗ j0.
Then we can compute a1a

2
2 ∗ j0 using a1a2 ∗ j0 and a22 ∗ j0. We continue

adding one a1 or a2 at a time until we have covered all ideals ai1a
j
2 for

0 ≤ i ≤ 3 and 0 ≤ j ≤ 2.

compose (public): Given encodings e(I) and e(J ), we want to compute e(IJ )
using only public information. For this we cheat by not really doing it. In-
stead, we make public some encodings of small ideals e(ak1

1 ), . . . , e(akt
t ). If

{a1, . . . , at} generate the class group, then we can assume all encodings are
made using only products of these ideals. Suppose e(I) is constructed us-
ing the equivalent ideal

∏
arii and e(J ) is constructed using

∏
asii . Then,

assuming that ri+si ≤ ki for all i, we can construct an encoding e(IJ ) by
taking ladders j0, ai ∗j0, . . . , ari+si

i ∗j0. These are subsets of the encodings

e(aki
i ), which we just made public.

Remark 2.3. Suppose that e(I) and e(J ) have disjoint support, meaning
that if e(I) was constructed from the factorization I ≡

∏
arii and e(J ) was

constructed using J ≡
∏

b
sj
j , then ai and bj have pairwise coprime norms.

Then a valid encoding e(IJ ) can be obtained by simply concatenating
e(I) and e(J ), without the need for any ladders.

inversion (hard): Given an encoding e(I), we want to know how much work
is required to find an encoding e(I−1). A related question is finding a
“canonical encoding”, i.e. given e(I), find I−1 ∗ j0 in Z/NZ.

Consider the case of an ideal l with prime norm `. This is called the
(`, `2)-isogenous neighbor problem. Since we are given e(l), we know
j0 and j1 = ` ∗ j0. Finding e(l−1) is equivalent to finding a root of
gcd(Φ`(j0, x),Φ`2(j1, x)) in Z/NZ. This polynomial has degree `, so find-
ing a root may be computationally difficult without the factorization of N .
Note that it is important that we don’t make public composition ladders
as long as the order of l in Cl(O) (see the compose function).

Remark 2.4. The (`, `2)-isogeneous neighbor problem is stated using only j-
invariants. However, one could also phrase it as follows: Given elliptic curves
E1, E2 over Z/NZ and an explicit `-isogeny ϕ : E1 → E2, find E3 such that
E3 admits an `-isogeny to E1 and cyclic `2 isogeny to E2. To see why this
version is equivalent, we need to show that given a pair j1, j2 ∈ Z/NZ such that
Φ`(j1, j2) ≡ 0 mod N , we can write down elliptic curves E1, E2 and an explicit
`-isogeny ϕ : E1 → E2 such that j(Ei) = ji. Moreover, all calculations must be
done over Z/NZ without factoring N . Using the formulas in [MS16, Sec. 2], it
is sufficient to find the kernel polynomial h(x) =

∏
(x−xQ), where the product

ranges over all Q ∈ kerϕ and xQ is the x-coordinate of the point Q. This can
be done following the method laid out in [Sch95, Sec. 8].
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3 Attacks

In this section we summarize several approaches to attacking the (`, `2)-isogeneous
neighbor problem.

Factoring N via E0: Suppose E0 is chosen such that #E0(Fp) and #E0(Fq)
have polynomially small factors. Then we could factor N using Lenstra’s
elliptic curve factorization algorithm. The subtleties are that it is difficult
to find a point P ∈ E0(Z/NZ), as it may require taking a square root.
However, we may be able to work with only the x-coordinate. To avoid
this attack, we should choose E0 such that #E0(Fp) and #E0(Fq) are not
polynomially-smooth.

` ≤ 3 case: If Φ`(j1, j2) ≡ 0 mod N , ` - N , then we can compute a kernel
polynomial h(x) for an isogeny E1 → E2 where j(Ei) = ji. This does not
require the factorization of N . If ` ≤ 3, then h(x) is linear, which gives
us an x-coordinate of a point P in E0(Z/NZ)[`]. This can not be used
in Lenstra’s factorization algorithm because `P = 0 in both E0(Fp) and
E0(Fq). It is suggested to avoid this case and only consider ` ≥ 5 [AC18,
Sec. 4.3].

Using the Hilbert class polynomial: Suppose we know the discriminant D
of O. Then

gcd (Φ`(j0, x),Φ`2(j1, x), HD(x))

is a linear function whose root is a solution to the (`, `2)-isogeneous neigh-
bor problem. To avoid this, we should choose D to be super-polynomial in
the security parameter. This should make computing HD (even modulo
N) difficult.

Frobenius relations: Suppose that ` factors in O as ll. Assume these are
non-trivial in the class group. Let j1 = l ∗ j0. Then a solution to the
(`, `2)-isogenous neighbor problem is j−1 = l ∗ j0. To see why, note that
l2 ∗ j−1 = l2 ∗ (l ∗ j0) = `O ∗ (l ∗ j0) = `O ∗ j1 = j1. As mentioned
in [AC18, Rem. 2.5], if we are working over a finite field, then the isogeny
from E−1 → E0 is related to the one from E0 → E1 by the Frobenius
automorphism. It is unclear how to use this fact over Z/NZ.

4 Applications

The paper [AC18] described a broadcast encryption scheme.

5 Open Problems

5.1 Security

The following problems, or certain specializations of these problems, should be
difficult in order for this system to be secure.
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1. Given E over Z/NZ, find a single elliptic curve `-isogenous to E.

2. Over Z/N , given an `-isogeny φ : E → E′ given as a rational map, solve
the (`, `2)-neighbor problem. One may additionally suppose that we have
coordinates of a point generating the kernel, or that ` = 3 (in which case
the x-coordinate of a kernel point can be easily found).

3. Solve the generalized (`, `2)-neighbor problem in the context of the start
of [AC18, Sec. 5.2].

4. [AC18, Sec. 5.2.2] In the isogeny volcano mod N , determine if a given
isogeny is horizontal, going up, or going down. Or better: find a horizontal
isogeny. Specifically, can we adapt an algorithm of Ionica-Joux [IJ13] for
this purpose?

A quick overview of [IJ13] is as follows. Let E/Fq be an ordinary elliptic
curve with endomorphism ring O. Suppose ` splits in O as ll. Then the
natural maps E → l ∗ E and E → l ∗ E are the horizontal isogenies.
These can be found by looking for invariant subspaces of the Frobenius
endomorphism (e.g. choose a basis of E[`] and find the eigenspaces for the
matrix of the Frobenius endomorphism). Every vertex not on the crater
admits a unique ascending isogeny, the rest are descending. The ascending
one can be determined by checking a certain pairing-based condition and
using some points in E[`∞] in E[Fqk ] for certain k, see [IJ13, Prop. 7].

5. [AC18, Sec. 5.2.3] When ` ∈ {2, 3, 5, 7, 13}, X0(`) has genus zero and
hence lots of rational points (see https://oeis.org/A001617). Can we
use these to get many points on X0(`) over Z/NZ, and leverage this to
solve any of the above problems?

6. Find a discriminant D and trapdoor τ so that solving DLP in the class
group Cl(D) is hard, but easy with the trapdoor.

7. [AC18, Defn. 5.4] Given an integerN and a set of primes P = {p1, . . . , pm},
find an integer D < 0 such that |D| ≤

√
N and

(
D
p

)
= 1 for all p ∈ P.

8. [AC18, Defn. 5.5] [Dam90, Prob. P1] Given(
a

p

)
,

(
a+ 1

p

)
, . . . ,

(
a+ `

p

)
,

determine
(

a+`+1
p

)
.

9. Given an encoding of an ideal class, is it possible to determine if the
element has polynomial order? If we know that the order is polynomial,
can we actually compute the order?

10. [AC18, Sec. 5.4] Decisional inversion: Given an encoding of e(I) and j-
invariant j, determine whether j = I−1 ∗ j0. Essentially, determine if j is
a “canonical encoding” of the “composable encoding” of I.
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5.2 Efficiency

Solving any of the following problems may lead to a more efficient cryptosystem
or more general parameters.

1. [AC18, Sec. 4] Given an order O in an imaginary quadratic field, find an
elliptic curve E over a finite field Fq with endomorphism ring O.

This problem is easy if the discriminant D of O is small. For example,
suppose O = Z[i]. The Hilbert class polynomial of Z[i] is HD(x) = x −
1728. We can then write down a model (e.g. Weierstrass equation) of an
elliptic curve E over Z with endomorphism ring EndQ(E) = Z[i]. Let p
be a prime of good reduction that splits in Z[i]. Then EndFp

(E) = Z[i],

so we output E/Fp.

If D is large, then computing HD is infeasible. However, suppose that
O has a large conductor, i.e. D has a large square factor. For example,
O = Z[2100i]. Then we look for π ∈ O with prime norm such that π does
not exist in any larger order, e.g. π = a + 2100i for some integer a. This
is equivalent to searching for integers a such that p = a2 + 2200 is prime.
Given such a prime p, we proceed as before to find E/Fp with EndFp

(E) =

Z[i]. Now we compute vertical 2-isogenies descending down the isogeny
volcano. That is, the first step takes us E → E1 and EndFp

(E1) = Z[2i].

Then E1 → E2 with EndFp
(E2) = Z[22i], and so on. The vertical isogenies

can be computed using the algorithm of Ionica-Joux [IJ13].

5.3 Theoretical

The following problems are helpful for either a security reduction or are inde-
pendently interesting.

1. Adapt the Kunihiro-Koyama point-counting algorithm [KK98] to the case
of E over Z/N where Ep and Eq have isomorphic endomorphism rings.

A quick overview of [KK98, Sec. 3]: Suppose we have a black box to com-
pute #E(Z/NZ). We want to show how to use this to factor N . The
algorithm is essentially the same as the standard elliptic curve factor-
ing algorithm. Start by choosing a random point P and random elliptic
curve E such that P ∈ E(Z/NZ). Then use the black box to compute
#E(Z/NZ). Let r be a prime roughly equal to logN . Repeat the process
until #E(Z/NZ) is divisible by r (this includes ≈ logN queries). Now

attempt to compute
(

#E(Z/NZ)
r

)
· P . If it fails, then it failed because

at some point in the addition formula we had to “divide by 0”, which
corresponds to finding a factor of N . Otherwise we repeat the process.

2. [AC18, Sec. 3.3] Is the (`, `2)-isogenous neighbor problem equivalent to
factoring? See [AC18, Thm. 3.3]
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