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Abstract

This talk will be more of a discussion on some open problems we have
seen so far. It should be independent of the previous talks. We will
focus on a few of the problems on class groups and isogenies referred to
in the Altug-Chen paper discussed on 2/22/19. The preprint is available
here: https://eprint.iacr.org/2018/926 and notes from the previous
talk can be found https://www.math.uci.edu/~schollt/multilinear_
map_seminar/scholl-02-22-19.pdf, The problems we will focus on are
finding an elliptic curve with a specified endomorphism ring, and finding
l-isogenies over composite rings.

1 Introduction

The following problems are relevent to the cryptosystem proposed in [ACTS§].

2 Elliptic Curves With Specified Endomorphism
Ring
This problem comes from [ACIS| Sec. 4].

Problem 1. Given an order O in an imaginary quadratic field, find an elliptic
curve E over a finite field F), with endomorphism ring O.

This problem is easy if the discriminant D of O is small. We can compute
the Hilbert class polynomial Hp(z) of O. For primes p that split in O, the
roots of Ho(x) mod p are j-invariants of ordinary elliptic curves over F,, with
endomorphism ring O.

Example 2. Suppose O = Z][i]. The Hilbert class polynomial of Z[i] is x —1728.
We can then write down a model (e.g. Weierstrass equation) of an elliptic curve
E over Z with endomorphism ring Endg(E) = Z[i], e.g. Y2 =X3+X. Let p
be a prime of good reduction that splits in Z[i]. Then Endg E = 73]

If the discriminant D of O is large, then computing He is infeasible. How-
ever, suppose that O has a large conductor, i.e. D has a large square factor.
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For example, O = Z[2!%%]. Then we look for 7 € O with prime norm such that
7 does not exist in any larger order, e.g. ™ = a + 2'°%; for some integer a. This
is equivalent to searching for integers a such that p = a? 4 22% is prime. Given
such a prime p, we proceed as before to find E/F, with Endg (E) = Z[i]. Now
we compute vertical 2-isogenies descending down the isogeny volcano. That is,
the first step takes us £ — Ey and Endg (Ey) = Z[2i]. Then E; — FE5 with

Endg (E2) = Z[2%i], and so on. The vertical isogenies can be computed using

the algorithm of Ionica-Joux [LJ13].
During the discussion we talked about the following existence problem.

Problem 3. Given a prime p and order O, does there exist an elliptic curve
E/F, with End E = O?

We came up with the following solution.

Theorem 4. Let p be a prime and O an order in a quadratic imaginary field.
There exists an elliptic curve E/F, with End E = O if and only if there exists
m € O such that 7 = p.

Proof. Suppose E exists. Let m € O correspond to the Frobenius endomorphism
on FE. Then it is well known that 77 = p. The reverse direction is given by
Honda-Tate theory which says there is a bijection between isogeny classes of
simple ordinary abelian varieties over IF,, and Weil p-numbers. O

3 The (¢, (?)-isogeny Problem
This problem comes from [ACIS| Sec. 5.2].

Problem 5. Let jo be the j-invariant of an elliptic curve over Z/NZ with
endomorphism ring O. Let [ be an ideal of O with prime norm /. Given jo and
jl = [*jo, find j_1 = [*]0

An easier version would be to ask for any root of ged (®4(jo, X), @2 (j1, X)).
The difference is that in this version, we are considering both horizontal and
vertical £-isogenies.

A related problem is the following: Given an elliptic curve E over Z/NZ,
find an elliptic curve f-isogeneous to E. A harder version of this is equivalent
to factoring.

Theorem 6 ([ACI8, Thm. 3.3]). If we can find all £-isogeneous neighbors to
E in expected polynomial time, then we can factoring N in expected polynomial
time.

Proof (sketch). The ¢-isogeneous neighbors of F are the roots of ®,(j, X) mod N.
The roots of this polynomial are in bijection with the cartesian product of
the roots in F, and the roots in F,. Therefore, we should be able to find
roots ji1,j2 € Z/NZ such that j; = j» mod p and j; # j» mod q. Then
ged(j1 — jo, N) is a non-trivial divisor of N. O



Example 7. Let N = 109 - 113. The roots of ®5(7104, X) in Z/NZ are 9031
and 12192. The ged of their difference with N is 109.

The main obstacle to adapting this proof to the original problem stated
above, is an efficient method for sampling pairs jo,j1 with ®,(jo,j1) = 0
mod N.

3.1 Modular Curves

Suppose X (¢) has genus < 1. Then we may be able to find many rational points
on Xo(¢). In particular, this gives us many pairs of j-invariants (ji, j2) which
satisfy ®y(X,Y’). However, it is unclear how to use this to solve the previous
problems. It may be possible to use this to reduce the (¢, £2)-isogeny problem to
factoring in the case of small £. That is, it may be possible to prove that finding
a single ¢-isogeneous neighbor is equivalent to factoring if X((¢) has genus 0 (or
genus 1 with a known rational point over Z/NZ of large order). It may also
be possible to provide some numerical experiments to conjecture such a result
should hold for arbitrary £.

4 Equivalence to Factoring

It was proved in [KK98] that counting #FE(Z/NZ) is equivalent to factoring N.
The proof is essentially Lenstra’s elliptic curve factorization algorithm.

A quick overview of [KK98| Sec. 3]: Suppose we have a black box to compute
#E(Z/NZ). We want to use this to factor N. The algorithm is essentially the
same as the standard elliptic curve factoring algorithm. Start by choosing a
random point P and random elliptic curve E such that P € E(Z/NZ). Then
use the black box to compute #F(Z/NZ). Let r be a prime roughly equal
to log N. Repeat the process until #F(Z/NZ) is divisible by r (this includes
~ log N queries). Now attempt to compute (W) - P. If it fails, then it
failed because at some point in the point addition formula we had to “divide
by 07, which corresponds to finding a factor of N. Otherwise we repeat the
process.

Problem 8. Adapt the Kunihiro-Koyama reduction theorem to the case where
the endomorphism rings End E/F), for prime factors p of N are all isomorphic.

A related problem is given an elliptic curve E over Z/NZ, where N =
pgq, determine whether End E/F, = End E/F,. This should be done without
factoring N.

Remark 9. In the context of [ACI1S], we should focus only on the case where
E/F, is ordinary. But the question makes sense for arbitrary curves. Therefore
it also makes sense to ask for End E/F, to be isomorphic.



Example 10. Let E be the elliptic curve given by Y2 = X3 4+ X. In this case,

Z[i] p=1 mod4
Zl\/-p] p=3 mod4

and
Zl[i] p=1 mod4

Endz F =
N, {(_%fl) p=3 mod 4.

Assume that p,q > 2. Then p = ¢ mod 4 if and only if N =1 mod 4. There-
fore we can quickly test whether E/F, and E/F, have the same endomorphism
ring. However, it is difficult to decide which case we are in. That is, given that
N =1 mod 4, we do not know how to efficiently test whether p =g =1 mod 4
or p=¢q =3 mod 4. This question is equivalent to asking whether IV is a sum
of two squares.
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