Open Problems Discussion

March 17, 2019

Abstract

This talk will be more of a discussion on some open problems we have seen so far. It should be independent of the previous talks. We will focus on a few of the problems on class groups and isogenies referred to in the Altug-Chen paper discussed on 2/22/19. The preprint is available here: https://eprint.iacr.org/2018/926 and notes from the previous talk can be found https://www.math.uci.edu/~schollt/multilinear_map_seminar/scholl-02-22-19.pdf. The problems we will focus on are finding an elliptic curve with a specified endomorphism ring, and finding l-isogenies over composite rings.

1 Introduction

The following problems are relevent to the cryptosystem proposed in [AC18].

2 Elliptic Curves With Specified Endomorphism Ring

This problem comes from [AC18, Sec. 4].

Problem 1. Given an order \mathcal{O} in an imaginary quadratic field, find an elliptic curve E over a finite field \mathbb{F}_p with endomorphism ring \mathcal{O} .

This problem is easy if the discriminant D of \mathcal{O} is small. We can compute the Hilbert class polynomial $H_{\mathcal{O}}(x)$ of \mathcal{O} . For primes p that split in \mathcal{O} , the roots of $H_{\mathcal{O}}(x)$ mod p are j-invariants of ordinary elliptic curves over \mathbb{F}_p with endomorphism ring \mathcal{O} .

Example 2. Suppose $\mathcal{O} = \mathbb{Z}[i]$. The Hilbert class polynomial of $\mathbb{Z}[i]$ is x-1728. We can then write down a model (e.g. Weierstrass equation) of an elliptic curve E over \mathbb{Z} with endomorphism ring $\operatorname{End}_{\overline{\mathbb{Q}}}(E) = \mathbb{Z}[i]$, e.g. $Y^2 = X^3 + X$. Let p be a prime of good reduction that splits in $\mathbb{Z}[i]$. Then $\operatorname{End}_{\overline{\mathbb{F}}_p} E = \mathbb{Z}[i]$.

If the discriminant D of \mathcal{O} is large, then computing $H_{\mathcal{O}}$ is infeasible. However, suppose that \mathcal{O} has a large conductor, i.e. D has a large square factor.

For example, $\mathcal{O}=\mathbb{Z}[2^{100}i]$. Then we look for $\pi\in\mathcal{O}$ with prime norm such that π does not exist in any larger order, e.g. $\pi=a+2^{100}i$ for some integer a. This is equivalent to searching for integers a such that $p=a^2+2^{200}$ is prime. Given such a prime p, we proceed as before to find E/\mathbb{F}_p with $\operatorname{End}_{\overline{\mathbb{F}}_p}(E)=\mathbb{Z}[i]$. Now we compute vertical 2-isogenies descending down the isogeny volcano. That is, the first step takes us $E\to E_1$ and $\operatorname{End}_{\overline{\mathbb{F}}_p}(E_1)=\mathbb{Z}[2i]$. Then $E_1\to E_2$ with $\operatorname{End}_{\overline{\mathbb{F}}_p}(E_2)=\mathbb{Z}[2^2i]$, and so on. The vertical isogenies can be computed using the algorithm of Ionica-Joux [IJ13].

During the discussion we talked about the following existence problem.

Problem 3. Given a prime p and order \mathcal{O} , does there exist an elliptic curve E/\mathbb{F}_p with End $E \cong \mathcal{O}$?

We came up with the following solution.

Theorem 4. Let p be a prime and \mathcal{O} an order in a quadratic imaginary field. There exists an elliptic curve E/\mathbb{F}_p with End $E \cong \mathcal{O}$ if and only if there exists $\pi \in \mathcal{O}$ such that $\pi \overline{\pi} = p$.

Proof. Suppose E exists. Let $\pi \in \mathcal{O}$ correspond to the Frobenius endomorphism on E. Then it is well known that $\pi \overline{\pi} = p$. The reverse direction is given by Honda-Tate theory which says there is a bijection between isogeny classes of simple ordinary abelian varieties over \mathbb{F}_p and Weil p-numbers.

3 The (ℓ, ℓ^2) -isogeny Problem

This problem comes from [AC18, Sec. 5.2].

Problem 5. Let j_0 be the j-invariant of an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$ with endomorphism ring \mathcal{O} . Let \mathfrak{l} be an ideal of \mathcal{O} with prime norm ℓ . Given j_0 and $j_1 = \mathfrak{l} * j_0$, find $j_{-1} = \overline{\mathfrak{l}} * j_0$.

An easier version would be to ask for any root of $\gcd(\Phi_{\ell}(j_0, X), \Phi_{\ell^2}(j_1, X))$. The difference is that in this version, we are considering both horizontal and vertical ℓ -isogenies.

A related problem is the following: Given an elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$, find an elliptic curve ℓ -isogeneous to E. A harder version of this is equivalent to factoring.

Theorem 6 ([AC18, Thm. 3.3]). If we can find all ℓ -isogeneous neighbors to E in expected polynomial time, then we can factoring N in expected polynomial time

Proof (sketch). The ℓ -isogeneous neighbors of E are the roots of $\Phi_{\ell}(j,X) \mod N$. The roots of this polynomial are in bijection with the cartesian product of the roots in \mathbb{F}_p and the roots in \mathbb{F}_q . Therefore, we should be able to find roots $j_1, j_2 \in \mathbb{Z}/N\mathbb{Z}$ such that $j_1 \equiv j_2 \mod p$ and $j_1 \not\equiv j_2 \mod q$. Then $\gcd(j_1 - j_2, N)$ is a non-trivial divisor of N.

Example 7. Let $N = 109 \cdot 113$. The roots of $\Phi_5(7104, X)$ in $\mathbb{Z}/N\mathbb{Z}$ are 9031 and 12192. The gcd of their difference with N is 109.

The main obstacle to adapting this proof to the original problem stated above, is an efficient method for sampling pairs j_0, j_1 with $\Phi_{\ell}(j_0, j_1) \equiv 0$ mod N.

3.1 Modular Curves

Suppose $X_0(\ell)$ has genus ≤ 1 . Then we may be able to find many rational points on $X_0(\ell)$. In particular, this gives us many pairs of j-invariants (j_1, j_2) which satisfy $\Phi_\ell(X,Y)$. However, it is unclear how to use this to solve the previous problems. It may be possible to use this to reduce the (ℓ,ℓ^2) -isogeny problem to factoring in the case of small ℓ . That is, it may be possible to prove that finding a single ℓ -isogeneous neighbor is equivalent to factoring if $X_0(\ell)$ has genus 0 (or genus 1 with a known rational point over $\mathbb{Z}/N\mathbb{Z}$ of large order). It may also be possible to provide some numerical experiments to conjecture such a result should hold for arbitrary ℓ .

4 Equivalence to Factoring

It was proved in [KK98] that counting $\#E(\mathbb{Z}/N\mathbb{Z})$ is equivalent to factoring N. The proof is essentially Lenstra's elliptic curve factorization algorithm.

A quick overview of [KK98, Sec. 3]: Suppose we have a black box to compute $\#E(\mathbb{Z}/N\mathbb{Z})$. We want to use this to factor N. The algorithm is essentially the same as the standard elliptic curve factoring algorithm. Start by choosing a random point P and random elliptic curve E such that $P \in E(\mathbb{Z}/N\mathbb{Z})$. Then use the black box to compute $\#E(\mathbb{Z}/N\mathbb{Z})$. Let r be a prime roughly equal to $\log N$. Repeat the process until $\#E(\mathbb{Z}/N\mathbb{Z})$ is divisible by r (this includes $\approx \log N$ queries). Now attempt to compute $\left(\frac{\#E(\mathbb{Z}/N\mathbb{Z})}{r}\right) \cdot P$. If it fails, then it failed because at some point in the point addition formula we had to "divide by 0", which corresponds to finding a factor of N. Otherwise we repeat the process.

Problem 8. Adapt the Kunihiro-Koyama reduction theorem to the case where the endomorphism rings End E/\mathbb{F}_p for prime factors p of N are all isomorphic.

A related problem is given an elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$, where N=pq, determine whether $\operatorname{End} E/\mathbb{F}_p\cong\operatorname{End} E/\mathbb{F}_q$. This should be done without factoring N.

Remark 9. In the context of [AC18], we should focus only on the case where E/\mathbb{F}_p is ordinary. But the question makes sense for arbitrary curves. Therefore it also makes sense to ask for End $E/\overline{\mathbb{F}}_p$ to be isomorphic.

Example 10. Let E be the elliptic curve given by $Y^2 = X^3 + X$. In this case,

$$\operatorname{End}_{\mathbb{F}_p}E\cong \begin{cases} \mathbb{Z}[i] & p\equiv 1\mod 4\\ \mathbb{Z}[\sqrt{-p}] & p\equiv 3\mod 4 \end{cases}$$

and

$$\operatorname{End}_{\overline{\mathbb{F}}_p} E \cong \begin{cases} \mathbb{Z}[i] & p \equiv 1 \mod 4 \\ \left(\frac{-p,-1}{\mathbb{Q}}\right) & p \equiv 3 \mod 4. \end{cases}$$

Assume that p,q>2. Then $p\equiv q\mod 4$ if and only if $N\equiv 1\mod 4$. Therefore we can quickly test whether E/\mathbb{F}_p and E/\mathbb{F}_q have the same endomorphism ring. However, it is difficult to decide which case we are in. That is, given that $N\equiv 1\mod 4$, we do not know how to efficiently test whether $p\equiv q\equiv 1\mod 4$ or $p\equiv q\equiv 3\mod 4$. This question is equivalent to asking whether N is a sum of two squares.

References

- [AC18] Salim Ali Altug and Yilei Chen. A candidate group with infeasible inversion. Cryptology ePrint Archive, Report 2018/926, 2018. https://eprint.iacr.org/2018/926.
- [IJ13] Sorina Ionica and Antoine Joux. Pairing the volcano. $Math.\ Comp.,$ $82(281):581-603,\ 2013.$
- [KK98] Noboru Kunihiro and Kenji Koyama. Equivalence of counting the number of points on elliptic curve over the ring Z_n and factoring n. In Advances in cryptology—EUROCRYPT '98 (Espoo), volume 1403 of Lecture Notes in Comput. Sci., pages 47–58. Springer, Berlin, 1998.