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Abstract. These are the notes for my talk given at the Kansuron Summer Seminar 2017 held at
Kyushu, Japan on September 6-8, 2017.

1. Brief History

Let (M, g) be a closed Riemannian manifold. We can define the Laplace-Beltrami operator
or the Laplacian locally in some coordinate (xi) by the formula

∆g :=
1√

det g

∂

∂xi

(
gij
√

det g
∂

∂xj

)
.

Since ∂M = ∅, we consider the closed eigenvalue problem: Find all real numbers µ for which
there exists a nontrivial solution f ∈ C2(M).

∆f + µf = 0.

By the divergence theorem, there is an immediate necessary condition for such a f , namely,

0 =

ˆ
M

∆f = −µ
ˆ
M
f.

So if µ 6= 0, we must have that
´
M f = 0. We can also get that the eigenvalues are non-negative as

the following shows,

µ

ˆ
M
f2 = −

ˆ
M
f∆f =

ˆ
M
|∇f |2 ≥ 0.

On closed manifolds, we can take f to be some constant so that µ0 = 0. It can also be shown that
the eigenvalues of the Laplacian are nondecreasing and discrete, so we order them as such,

0 = µ0 < µ1 ≤ µ2 ≤ . . .

There is also a variational characterization of the eigenvalues, called the Min-Max Principle:

µ1 = inf

{´
M |∇f |

2´
M f2

| f ∈ H2
1 (M),

ˆ
f = 0

}
µk = inf

{´
M |∇f |

2´
M f2

| f ∈ H2
1 (M),

ˆ
ffi = 0, i = 1, . . . k − 1, fi are eigenfunctions of µi

}
Here H1

2 denotes the completion of C∞(M) with respect to the (Sobolev) norm

‖f‖1,2 :=

ˆ
M
|f |2 + |∇f |2.

We will focus mainly on the first eigenvalue µ1. We now present a sharp estimate on the first
nonzero eigenvalue of the Laplacian.
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Theorem 1.1 (Lichnerowicz-Obata [2], [5]). Let M be an n-dimensional complete Riemannian
manifold with Ricci curvature Ric ≥ (n− 1)K, K > 0. Then the first nonzero eigenvalue satisfies
µ1 ≥ nK = µ1(Sn

K). Furthermore, if µ1 = nK, then M is isometric to the constant curvature space
Sn
K .

We present a generalization of this result in two aspects: Integral Ricci curvature and the p-
Laplacian.

1.1. p-Laplacian. The eigenvalue problem can be thought of as the minimizer of the following
Rayleigh quotient (Dirichlet energy) functional

F2(f) =

´
M |∇f |

2´
M f2

.

We can generalize this to the Lp norm by

Fp(f) =

´
M |∇f |

p´
M |f |p

.

Computing the variation for Fp leads to the following eigenvalue equation for the p-Laplacian,

∆p(f) := div(|∇f |p−2∇f) = −µ|f |p−2f.

The p-Laplace operator ∆p is a second order quasilinear elliptic operator and when p = 2 it is the
usual Laplacian. By direct computation, the relation between the p-Laplacian and the Laplacian
is given by

(1.1) ∆pf = (p− 2)|∇f |p−4 Hess f(∇f,∇f) + |∇f |p−2∆f.

While the regularity theory of the p-Laplacian is very different for p 6= 2 (c.f. [3]), many of the
estimates, including the Lichnerowicz-Obata theorem, can be generalized for general p.

1.2. Integral Ricci curvature. For each x ∈ Mn, denote the smallest eigenvalue for the Ricci
tensor Ric : TxM → TxM , and define RicK− := ((n− 1)K− ρ(x))+ := max{0, (n− 1)K− ρ(x)}. Let

‖RicK− ‖q,R = sup
x∈M

(ˆ
B(x,R)

(RicK− )qdV

) 1
q

.

The quantity ‖RicK− ‖q,R measure the amount of Ricci curvature lying below a given bound, this

this case, (n − 1)K, in the Lq sense. Write the limit as R → ∞ by ‖RicK− ‖q. This generalizes

the pointwise Ricci lower bound since ‖RicK− ‖q,R = 0 if and only if Ric ≥ (n− 1)K. A convenient
quantity we will work with is the normalized Lq norm, namely

‖f‖∗q,Ω =

(
1

vol(Ω)

ˆ
Ω
|f |qdV

) 1
q

.

Many results with the assumption of pointwise Ricci curvature lower bound, for instance Laplace
and volume comparison, have been extended to the integral Ricci curvature setting [6].

2. Eigenvalue lower bound

Definition 2.1 (p-Laplacian). Define the p-Laplacian, ∆p and the corresponding eigenvalue prob-
lem

∆p(f) := div(|∇f |p−2∇f) = −µ|f |p−2f.

Let µ1,p be the first non-zero eigenvalue.
In [7], we extend the eigenvalue results of Aubry [1], Matei [4], to the setting of integral Ricci

curvature:
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Theorem 2.1 (Lichnerowicz-type estimate (Theorem 1.2 [7])). Let (Mn, g) be a complete Rie-
mannian manifold. For q > n

2 , p ≥ 2 and K > 0, there exists ε = ε(n, p, q,K) such that if

‖RicK− ‖∗q ≤ ε, then

µ
2
p

1,p ≥
√
n(p− 2) + n

(p− 1)(
√
n(p− 2) + n− 1)

[
(n− 1)K − 2‖RicK− ‖∗q

]
.

In particular, when Ric ≥ (n− 1)K, we have

µ
2
p

1,p ≥
√
n(p− 2) + n√

n(p− 2) + n− 1
· (n− 1)K

p− 1
≥ (n− 1)K

p− 1
.

When p = 2, the estimate recovers the Lichnerowicz estimate. For an optimal estimate, we have

Theorem 2.2 (Lichnerowicz-Obata-type estimate (Theorem 1.3 [7])). Let Mn be a complete
Riemannian manifold. Then for any α > 1, K > 0, q > n

2 , and any p > 1, there is an

ε = ε(n, p, q, α,K) > 0 such that if ‖RicK− ‖∗q ≤ ε, then

αµ1,p(M) ≥ µ1,p(S
n
K).

Proof of Theorem 2.1 lower bound. We will first need to extend the Bochner formula to the p-
Laplacian.

Lemma 2.1 (p-Bochner formula).

1

p
∆(|∇f |p)

= (p− 2)|∇f |p−2||∇f ||2 +
1

2
|∇f |p−2

[
|Hess f |2 + 〈∇f,∇∆f〉+ Ric(∇f,∇f)

]
.

(2.1)

We also will need a Sobolev inequality in the integral Ricci curvature setting:

Proposition 2.1. Given q > n
2 and K > 0, there exists ε = ε(n, q,K) such that if Mn is a complete

manifold with ‖RicK− ‖∗q ≤ ε, then there is a constant Cs(n, q,K) such that( 
M
f

2q
q−1

) q−1
q

≤ Cs(n, q,K)

 
M
|∇f |2 + 2

 
M
f2.

for all functions f ∈W 1,2.

Now we proceed to prove Theorem 2.1. Integrating (2.1), we have

0 =

 
M
|∇f |p−2

[
(p− 2)|∇|∇f ||2 + |Hess f |2 + 〈∇f,∇∆f〉+ Ric(∇f,∇f)

]
The key is to show appropriate estimates for each term. By the Cauchy-Schwarz inequalty,

|Hess(∇f,∇f)|2 ≤ |∇f |4|Hess f |2

|∆f |2 ≤ n|Hess f |2.
Combining with (1.1), we can compute that 

M
|∇f |p−2|Hess f |2 ≥ 1

n

 
M

∆f∆pf −
p− 2√
n

 
M
|∇f |p−2|Hess f |2.

so that  
M
|∇f |p−2|Hess f |2 ≥ 1

n+
√
n(p− 2)

 
M

∆f∆pf.

Integrating by parts,  
M
|∇f |p−2〈∇f,∇(∆f)〉 = −

 
M

∆pf∆f.
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The Ricci curvature term can be bounded by

 
M
|∇f |p−2 Ric(∇f,∇f) ≥ (n− 1)K

 
M
|∇f |p − ‖RicK− ‖∗q

(
|∇f |

pq
q−1

) q−1
q
.

Applying the Sobolev inequality,( 
M

(
|∇f |

p
2

) 2q
q−1

) q−1
q

≤ Cs
p2

4

 
M
|∇f |p−2|∇|∇f ||2 + 2

 
M
|∇f |p.

Combining these inequalities, we get

0 ≥ −n− 1 +
√
n(p− 2)

n+
√
n(p− 2)

 
M

∆pf∆f + ((n− 1)K − 2‖RicK− ‖∗q)
 
M
|∇f |p

+

(
(p− 2)− Cs‖RicK− ‖∗q

p2

4

)  
M
|∇f |p−2|∇|∇f ||2.

Choose ‖RicK− ‖∗q small so that
(

(p− 2)− Cs‖RicK− ‖∗q
p2

4

)
≥ 0, we can throw the last term away

(here we possibly lose the sharpness of the estimate), we get

0 ≥ −n− 1 +
√
n(p− 2)

n+
√
n(p− 2)

 
M

∆pf∆f + ((n− 1)K − 2‖RicK− ‖∗q)
 
M
|∇f |p.

Let f be the first eigenfunction for ∆p, i.e., ∆pf = −µ|f |p−2f . Then integrating by parts, we have

 
M

∆pf∆f = µ(p− 1)

 
M
|f |p−2|∇f |2

≤ µ(p− 1)

( 
M
|f |p

)1− 2
p
( 

M
|∇f |p

) 2
p

= (µ)
2
p (p− 1)

 
M
|∇f |p,

where we used the fact that f is the first eigenfunction so that
 
M
|f |p =

1

µ

 
M
|∇f |p.

Combining these, we obtain

(µ)
2
p

[
(p− 1)

n− 1 +
√
n(p− 2)

n+
√
n(p− 2)

]
≥ (n− 1)K − 2‖RicK− ‖∗q .

�

For the optimal lower bound, the eigenvalue of the p-Laplacian for the sphere is not explicitly
known. Hence, we will first need to show a Faber-Krahn type estimate for the p-Laplacian. The
estimate gives a lower bound of the first eigenvalue of a domain with Dirichlet boundary conditions
comparing to the first eigenvalue of a ball in constant curvature space. Applying the estimate to
each nodal domain and using the fact that the nodal domain of the first Dirichlet eigenvalue on
a sphere is a hemisphere, we can show that the lower bound is achieved by a sphere. See [7] for
details.
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