FIRST EIGENVALUE OF THE LAPLACIAN ON CLOSED RIEMANNIAN MANIFOLDS

SHOO SETO

ABSTRACT. These are the notes for my talk given at the Kansuron Summer Seminar 2017 held at Kyushu, Japan on September 6-8, 2017.

1. Brief History

Let (M, g) be a closed Riemannian manifold. We can define the **Laplace-Beltrami operator** or the **Laplacian** locally in some coordinate (x^i) by the formula

$$\Delta_g := \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{\det g} \frac{\partial}{\partial x^j} \right).$$

Since $\partial M = \emptyset$, we consider the **closed eigenvalue problem**: Find all real numbers μ for which there exists a nontrivial solution $f \in C^2(M)$.

$$\Delta f + \mu f = 0.$$

By the divergence theorem, there is an immediate necessary condition for such a f, namely,

$$0 = \int_M \Delta f = -\mu \int_M f.$$

So if $\mu \neq 0$, we must have that $\int_M f = 0$. We can also get that the eigenvalues are non-negative as the following shows,

$$\mu \int_M f^2 = -\int_M f\Delta f = \int_M |\nabla f|^2 \ge 0.$$

On closed manifolds, we can take f to be some constant so that $\mu_0 = 0$. It can also be shown that the eigenvalues of the Laplacian are nondecreasing and discrete, so we order them as such,

$$0=\mu_0<\mu_1\le\mu_2\le\ldots$$

There is also a variational characterization of the eigenvalues, called the **Min-Max Principle**:

$$\mu_{1} = \inf \left\{ \frac{\int_{M} |\nabla f|^{2}}{\int_{M} f^{2}} \mid f \in H_{1}^{2}(M), \int f = 0 \right\}$$

$$\mu_{k} = \inf \left\{ \frac{\int_{M} |\nabla f|^{2}}{\int_{M} f^{2}} \mid f \in H_{1}^{2}(M), \int f f_{i} = 0, i = 1, \dots, k - 1, f_{i} \text{ are eigenfunctions of } \mu_{i} \right\}$$

Here H_2^1 denotes the completion of $C^\infty(M)$ with respect to the (Sobolev) norm

$$||f||_{1,2} := \int_M |f|^2 + |\nabla f|^2.$$

We will focus mainly on the first eigenvalue μ_1 . We now present a sharp estimate on the first nonzero eigenvalue of the Laplacian.

SHOO SETO

Theorem 1.1 (Lichnerowicz-Obata [2], [5]). Let M be an n-dimensional complete Riemannian manifold with Ricci curvature Ric $\geq (n-1)K$, K > 0. Then the first nonzero eigenvalue satisfies $\mu_1 \geq nK = \mu_1(S_K^n)$. Furthermore, if $\mu_1 = nK$, then M is isometric to the constant curvature space S_K^n .

We present a generalization of this result in two aspects: Integral Ricci curvature and the p-Laplacian.

1.1. *p*-Laplacian. The eigenvalue problem can be thought of as the minimizer of the following Rayleigh quotient (Dirichlet energy) functional

$$\mathcal{F}_2(f) = \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

We can generalize this to the L^p norm by

$$\mathcal{F}_p(f) = \frac{\int_M |\nabla f|^p}{\int_M |f|^p}.$$

Computing the variation for \mathcal{F}_p leads to the following eigenvalue equation for the *p*-Laplacian,

$$\Delta_p(f) := \operatorname{div}(|\nabla f|^{p-2}\nabla f) = -\mu |f|^{p-2} f.$$

The *p*-Laplace operator Δ_p is a second order quasilinear elliptic operator and when p = 2 it is the usual Laplacian. By direct computation, the relation between the *p*-Laplacian and the Laplacian is given by

(1.1)
$$\Delta_p f = (p-2)|\nabla f|^{p-4} \operatorname{Hess} f(\nabla f, \nabla f) + |\nabla f|^{p-2} \Delta f.$$

While the regularity theory of the *p*-Laplacian is very different for $p \neq 2$ (c.f. [3]), many of the estimates, including the Lichnerowicz-Obata theorem, can be generalized for general *p*.

1.2. Integral Ricci curvature. For each $x \in M^n$, denote the smallest eigenvalue for the Ricci tensor Ric : $T_x M \to T_x M$, and define Ric^K₋ := $((n-1)K - \rho(x))_+ := \max\{0, (n-1)K - \rho(x)\}$. Let

$$\|\operatorname{Ric}_{-}^{K}\|_{q,R} = \sup_{x \in M} \left(\int_{B(x,R)} (\operatorname{Ric}_{-}^{K})^{q} dV \right)^{\frac{1}{q}}.$$

The quantity $\|\operatorname{Ric}_{-}^{K}\|_{q,R}$ measure the amount of Ricci curvature lying below a given bound, this this case, (n-1)K, in the L^{q} sense. Write the limit as $R \to \infty$ by $\|\operatorname{Ric}_{-}^{K}\|_{q}$. This generalizes the pointwise Ricci lower bound since $\|\operatorname{Ric}_{-}^{K}\|_{q,R} = 0$ if and only if $\operatorname{Ric} \geq (n-1)K$. A convenient quantity we will work with is the normalized L^{q} norm, namely

$$\|f\|_{q,\Omega}^* = \left(\frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} |f|^q dV\right)^{\frac{1}{q}}$$

Many results with the assumption of pointwise Ricci curvature lower bound, for instance Laplace and volume comparison, have been extended to the integral Ricci curvature setting [6].

2. Eigenvalue lower bound

Definition 2.1 (*p*-Laplacian). Define the *p*-Laplacian, Δ_p and the corresponding eigenvalue problem

$$\Delta_p(f) := \operatorname{div}(|\nabla f|^{p-2}\nabla f) = -\mu |f|^{p-2} f.$$

Let $\mu_{1,p}$ be the first non-zero eigenvalue.

In [7], we extend the eigenvalue results of Aubry [1], Matei [4], to the setting of *integral Ricci* curvature:

Theorem 2.1 (Lichnerowicz-type estimate (Theorem 1.2 [7])). Let (M^n, g) be a complete Riemannian manifold. For $q > \frac{n}{2}$, $p \ge 2$ and K > 0, there exists $\varepsilon = \varepsilon(n, p, q, K)$ such that if $\|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \le \varepsilon$, then

$$\mu_{1,p}^{\frac{2}{p}} \ge \frac{\sqrt{n}(p-2) + n}{(p-1)(\sqrt{n}(p-2) + n - 1)} \left[(n-1)K - 2 \|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \right].$$

In particular, when $\operatorname{Ric} \geq (n-1)K$, we have

$$\mu_{1,p}^{\frac{2}{p}} \ge \frac{\sqrt{n(p-2)} + n}{\sqrt{n(p-2)} + n - 1} \cdot \frac{(n-1)K}{p-1} \ge \frac{(n-1)K}{p-1}$$

When p = 2, the estimate recovers the Lichnerowicz estimate. For an optimal estimate, we have

Theorem 2.2 (Lichnerowicz-Obata-type estimate (Theorem 1.3 [7])). Let M^n be a complete Riemannian manifold. Then for any $\alpha > 1$, K > 0, $q > \frac{n}{2}$, and any p > 1, there is an $\varepsilon = \varepsilon(n, p, q, \alpha, K) > 0$ such that if $\|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \leq \varepsilon$, then

$$\alpha \mu_{1,p}(M) \ge \mu_{1,p}(S_K^n).$$

Proof of Theorem 2.1 lower bound. We will first need to extend the Bochner formula to the p-Laplacian.

Lemma 2.1 (*p*-Bochner formula).

$$\frac{1}{p}\Delta(|\nabla f|^p) = (p-2)|\nabla f|^{p-2}||\nabla f||^2 + \frac{1}{2}|\nabla f|^{p-2}\left[|\operatorname{Hess} f|^2 + \langle \nabla f, \nabla \Delta f \rangle + \operatorname{Ric}(\nabla f, \nabla f)\right].$$

We also will need a Sobolev inequality in the integral Ricci curvature setting:

Proposition 2.1. Given $q > \frac{n}{2}$ and K > 0, there exists $\varepsilon = \varepsilon(n, q, K)$ such that if M^n is a complete manifold with $\|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \leq \varepsilon$, then there is a constant $C_{s}(n, q, K)$ such that

$$\left(\int_{M} f^{\frac{2q}{q-1}}\right)^{\frac{q-1}{q}} \leq C_s(n,q,K) \int_{M} |\nabla f|^2 + 2 \int_{M} f^2.$$

for all functions $f \in W^{1,2}$.

Now we proceed to prove Theorem 2.1. Integrating (2.1), we have

$$0 = \oint_{M} |\nabla f|^{p-2} \left[(p-2) |\nabla |\nabla f||^{2} + |\operatorname{Hess} f|^{2} + \langle \nabla f, \nabla \Delta f \rangle + \operatorname{Ric}(\nabla f, \nabla f) \right]$$

The key is to show appropriate estimates for each term. By the Cauchy-Schwarz inequalty,

$$|\operatorname{Hess}(\nabla f, \nabla f)|^2 \le |\nabla f|^4 |\operatorname{Hess} f|^2$$
$$|\Delta f|^2 \le n |\operatorname{Hess} f|^2.$$

Combining with (1.1), we can compute that

$$\int_{M} |\nabla f|^{p-2} |\operatorname{Hess} f|^{2} \ge \frac{1}{n} \int_{M} \Delta f \Delta_{p} f - \frac{p-2}{\sqrt{n}} \int_{M} |\nabla f|^{p-2} |\operatorname{Hess} f|^{2}.$$

so that

$$\int_{M} |\nabla f|^{p-2} |\operatorname{Hess} f|^{2} \ge \frac{1}{n + \sqrt{n}(p-2)} \int_{M} \Delta f \Delta_{p} f.$$

Integrating by parts,

$$\int_{M} |\nabla f|^{p-2} \langle \nabla f, \nabla(\Delta f) \rangle = - \int_{M} \Delta_{p} f \Delta f$$

The Ricci curvature term can be bounded by

$$\oint_{M} |\nabla f|^{p-2} \operatorname{Ric}(\nabla f, \nabla f) \ge (n-1)K \oint_{M} |\nabla f|^{p} - \|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \left(|\nabla f|^{\frac{pq}{q-1}}\right)^{\frac{q-1}{q}}$$

Applying the Sobolev inequality,

$$\left(\int_{M} \left(|\nabla f|^{\frac{p}{2}}\right)^{\frac{2q}{q-1}}\right)^{\frac{q-1}{q}} \le C_s \frac{p^2}{4} \int_{M} |\nabla f|^{p-2} |\nabla| \nabla f||^2 + 2 \int_{M} |\nabla f|^p.$$

Combining these inequalities, we get

$$0 \ge -\frac{n-1+\sqrt{n}(p-2)}{n+\sqrt{n}(p-2)} \oint_{M} \Delta_{p} f \Delta f + ((n-1)K-2 \|\operatorname{Ric}_{-}^{K}\|_{q}^{*}) \oint_{M} |\nabla f|^{p} + \left((p-2) - C_{s} \|\operatorname{Ric}_{-}^{K}\|_{q}^{*} \frac{p^{2}}{4}\right) \oint_{M} |\nabla f|^{p-2} |\nabla|\nabla f||^{2}.$$

Choose $\|\operatorname{Ric}_{-}^{K}\|_{q}^{*}$ small so that $\left((p-2)-C_{s}\|\operatorname{Ric}_{-}^{K}\|_{q}^{*}\frac{p^{2}}{4}\right) \geq 0$, we can throw the last term away (here we possibly lose the sharpness of the estimate), we get

$$0 \ge -\frac{n-1+\sqrt{n}(p-2)}{n+\sqrt{n}(p-2)} \oint_M \Delta_p f \Delta f + ((n-1)K - 2\|\operatorname{Ric}_-^K\|_q^*) \oint_M |\nabla f|^p.$$

Let f be the first eigenfunction for Δ_p , i.e., $\Delta_p f = -\mu |f|^{p-2} f$. Then integrating by parts, we have

$$\begin{split} & \int_{M} \Delta_{p} f \Delta f = \mu(p-1) \int_{M} |f|^{p-2} |\nabla f|^{2} \\ & \leq \mu(p-1) \left(\int_{M} |f|^{p} \right)^{1-\frac{2}{p}} \left(\int_{M} |\nabla f|^{p} \right)^{\frac{2}{p}} \\ & = (\mu)^{\frac{2}{p}} (p-1) \int_{M} |\nabla f|^{p}, \end{split}$$

where we used the fact that f is the first eigenfunction so that

$$f_M |f|^p = \frac{1}{\mu} f_M |\nabla f|^p$$

Combining these, we obtain

$$(\mu)^{\frac{2}{p}} \left[(p-1)\frac{n-1+\sqrt{n}(p-2)}{n+\sqrt{n}(p-2)} \right] \ge (n-1)K - 2\|\operatorname{Ric}_{-}^{K}\|_{q}^{*}.$$

For the optimal lower bound, the eigenvalue of the p-Laplacian for the sphere is not explicitly known. Hence, we will first need to show a Faber-Krahn type estimate for the p-Laplacian. The estimate gives a lower bound of the first eigenvalue of a domain with Dirichlet boundary conditions comparing to the first eigenvalue of a ball in constant curvature space. Applying the estimate to each nodal domain and using the fact that the nodal domain of the first Dirichlet eigenvalue on a sphere is a hemisphere, we can show that the lower bound is achieved by a sphere. See [7] for details.

References

- E. Aubry, Finiteness of π₁ and geometric inequalities in almost positive Ricci curvature, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 4, 675–695, DOI 10.1016/j.ansens.2007.07.001 (English, with English and French summaries). MR2191529
- [2] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958 (French).
- [3] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 102, University of Jyväskylä, Jyväskylä, 2006. MR2242021
- [4] A.-M. Matei, First eigenvalue for the p-Laplace operator, Nonlinear Anal. 39 (2000), no. 8, Ser. A: Theory Methods, 1051–1068, DOI 10.1016/S0362-546X(98)00266-1. MR1735181
- [5] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
- [6] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031–1045, DOI 10.1007/s000390050036. MR1487753
- [7] S. Seto and G. Wei, First eigenvalue of the p-Laplacian under integral curvature condition, Nonlinear Anal. 163 (2017), 60–70.