
THE FIRST NONZERO EIGENVALUE OF THE p-LAPLACIAN ON1

DIFFERENTIAL FORMS2

SHOO SETO3

Abstract. We introduce a generalization of the p-Laplace operator to act on differential
forms and generalize an estimate of Gallot-Meyer [3] for the first nonzero eigenvalue on
closed Riemannian manifolds.

1. Introduction4

Let (M, g) be an n-dimensional closed Riemannian manifold. Motivated from the vari-5

ational characterization of the Laplacian eigenvalue problem, we define the Lp-Dirichlet6

integral on k-forms (introduced in [12]) by7

(1) F [α] :=

�
M

‖dα‖p + ‖d∗α‖p, α ∈ Ωk(M),

where d∗ is the L2-adjoint of the exterior derivative d. Note that F [α] = 0 if and only8

if α ∈ Hk(M), that is, the minimum is zero and is attained for harmonic k-forms, i.e.9

α ∈ ker(d) ∩ ker(d∗). For a nonzero infimum we consider the space10

(2) Ak :=

{
α ∈ W1,p(Ωk(M)) |

 
M

‖α‖p = 1,

�
M

‖α‖p−2〈α, ω〉 = 0, ω ∈ Hk(M)

}
,

where the space W1,p(Ωk(M)) is the (1, p)-Sobolev space of differential k-forms defined in11

[12]. See §3 for the precise definition. Computing the Euler-Lagrange equation leads us to12

the defining the following operator13

Definition 1.1 (p-Hodge Laplacian).

(3) ∆pα := d∗(‖dα‖p−2dα) + d(‖d∗α‖p−2d∗α), α ∈ Ωk(M).

When p = 2, this becomes the usual Hodge Laplacian. For p 6= 2 and α ∈ C∞(M) ∆p14

becomes the usual p-Laplacian. The corresponding eigenvalue equation is given by15

(4) ∆pα = λ‖α‖p−2α, α ∈ Ωk(M)

and the variational principle tells us that

λ1 = inf{F [α] | α ∈ Ak}.
See §3 for details. When p = 2, there is much work on the spectrum of the Hodge-Laplacian16

acting on differential forms. Among many others, we point out the work of Gallot-Meyer17

[3], [4] who show an estimate of the first eigenvalue using bounds from the Weitzenböck18

curvature on compact Riemannian manifolds. For manifolds with boundary, among many19

others, see works of Kwong [5], Savo [11], Raulot-Savo [10], and references therein.20
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For p 6= 2, the p-Laplace eigenvalue problem on 0-forms (functions) has attracted much1

attention. See notes by Lindqvist [6] for a general reference on the p-Laplace equation. For2

estimates on the first eigenvalue relating to the curvature, among many other works, see3

Matei [7], Naber-Valtorta [9], Seto-Wei [13] for eigenvalue estimates with Ric ≥ K, K ∈ R.4

Remark 1.1. There is also a related notion of p-harmonic k-forms which looks at the
minimizer in a cohomology class of k-forms with finite Lp-norm, i.e.

inf
α∈Hk

d (M)

�
M

‖α‖p.

The critical point of the variation leads to the following definition of p-harmonic, for closed
k-forms α, if

d∗p := d∗(‖α‖p−2α) = 0

then α is p-harmonic. See [1] and references therein.5

In this paper we prove the following lower bound estimate for the first eigenvalue6

Theorem 1.1. Let Mn be a closed Riemannian manifold with the eigenvalues of the curva-
ture operator bounded below by H ∈ R and p ≥ 2. Then

λ1 ≥

 k(n− k)

2
2
p
−1
(
C + (p−2)

2

)H


p
2

,

where

C = max

{
k

k + 1
,

n− k
n− k + 1

}
.

Remark 1.2. When p = 2, the above recovers the estimate due to Gallot-Meyer [3] (see
also [4]), for 1 ≤ k ≤ n

2
,

λ1 ≥ k(n− k + 1)H.

The organization of this paper is as follows. In §2 we review some known estimates for7

differential k-forms. In §3 we show that the infimum can be characterized as an eigenvalue8

problem. In §4 we give the main estimate. In §5 we give a brief discussion on boundary9

conditions for differential forms and possible future directions.10

Acknowledgments: The author would like to thank Prof. Zhiqin Lu for very helpful11

discussions, suggestions and constant support, and to Prof. Guofang Wei and Prof. Qi12

Zhang for discussions and encouragement on the problem. We also thank Prof. Nguyen13

Thac Dung for letting of know of an improvement on the constant, see Lemma 2.2.14

2. Some estimates on Ωk(M)15

We first recall the Weitzenböck curvature16

Definition 2.1. Let p ∈ M and let {Ei}ni=1 be an orthonormal frame at p. Then for
α ∈ Ωk(M), define the Weitzenböck curvature Wk by

Wk(α)(X1, . . . , Xk) :=
∑

(R(Ej, Xi)α)(X1, . . . , Ej, . . . , Xk).

Note that on 1-forms, this is simply the Ricci tensor.17
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If the eigenvalues of the curvature operator are bounded by H ∈ R, we can show that1

(5) (Wk(α), α) ≥ k(n+ 1− k)H‖α‖2.
The Weitzenböck curvature shows up in the main tool we will use in obtaining our estimate2

is the Bochner-Weitzenböck formula for k-forms3

(6)
1

2
∆‖α‖2 = (∆α, α)− ‖∇α‖2 − (Wk(α), α),

where ∆ := ∆2 = dd∗ + d∗d. Note that for exact 1-form α = df , since ∇df = Hess f , the4

usual Cauchy-Schwarz inequality will give us an estimate on the middle term. For k-forms,5

we will need the following proved by Gallot-Meyer6

Lemma 2.1 ([3]). Let α ∈ Ωk(M), 1 ≤ k ≤ n− 1. Then7

(7) ‖∇α‖2 ≥ 1

k + 1
‖dα‖2 +

1

n− k + 1
‖d∗α‖2.

We give a proof for completeness. The proof we give is in the context of conformal Killing8

forms and can be found in various sources, for instance, [8].9

Proof. Consider the two linear maps

ι : TM ⊗ Ωk(M)→ Ωk−1(M)

ι(v, α) = ιvα

and

∧ : Ω1(M)⊗ Ωk(M)→ Ωk+1(M)

∧ (β, α) = β ∧ α.
Let ι∗ and ∧∗ be their metric adjoint. Then

∧ ◦ ι∗(α) = 0 and ι ◦ ∧∗(α) = 0,

so that we get the decomposition

TM ⊗ Ωk(M) ' im(ι∗)⊕ im(∧∗)⊕ Y

where Y is the orthogonal complement. By direct computation, we have for α ∈ Ωk(M),

ι ◦ ι∗(α) = (n− k + 1)α and ∧ ◦ ∧∗ (α) = (k + 1)α.

Viewing ∇α ∈ Γ(TM ⊗ Ωk(M)), From the decomposition,

∇α = ι∗β + ∧∗γ + δ,

applying ι, we have

ι∇α = (n− k + 1)β.

So the projection operator onto im(ι∗) is given by

πι∗∇α =
1

n− k + 1
ι∗ι∇α

and similarly

π∧∗∇α =
1

k + 1
∧∗ ∧∇α.
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Let Tα := πT (∇α) the projection onto the orthogonal complement space. Since

dα = ∧(∇α) and d∗α = −ι(∇α),

we have the decomposition

Tα(X) = ∇Xα−
1

k + 1
ιXdα +

1

n− k + 1
X∗ ∧ d∗α

and taking the norm gives us

‖∇α‖2 = ‖Tα‖2 +
1

k + 1
‖dα‖2 +

1

n− k + 1
‖d∗α‖2,

which implies (7). �1

Remark 2.1. The projection operator T defined above is called the twistor operator and a2

form α ∈ Ωk(M) is called a conformal Killing form if Tα = 0.3

The following lemma was pointed out by N.T. Dung and gives us a way to control the4

interior product by using an orthogonal decomposition of forms as the image under an interior5

product.6

Lemma 2.2 (Lemma 3.5 [2]). Let V ∈ TM , α ∈ Ωk+1, β ∈ Ωk. Then

|〈ιV α, β〉| ≤ ‖V ‖‖α‖‖β‖.

3. Variational characterization of the eigenvalue7

In this section we will compute the Euler-Lagrange equation of (1) and show that the
extremal problem can be reformulated as an eigenvalue problem. Analogous to the 0-form
(function) case, we will look at weak solutions lying the (1, p)-Sobolev space of differential
k-forms first defined by Scott in [12] as

W1,p(Ωk(M)) :=
{
α ∈ W (Ωk(M)) | α, dα, d∗α ∈ Lp(Ω∗(M))

}
where W (Ωk(M)) is the classical Sobolev space of k-forms, i.e., α is locally integrable and8

admits a generalized gradient.9

Definition 3.1. We say that λ is an eigenvalue, if there exists a k-form α ∈ W1,p(Ωk(M))
such that �

M

‖dα‖p−2〈dα, dβ〉+

�
M

‖d∗α‖p−2〈d∗α, d∗β〉 = λ

�
M

‖α‖p−2〈α, β〉,

for any β ∈ C∞(Ωk(M)).10

We will show the first nonzero eigenvalue λ1 can be characterized as the infimum of the11

Lp-Dirichlet energy over the space Ak given in (2).12

Proposition 3.1. For closed manifolds M and p ≥ 2,

λ1 = inf

{�
M

‖dα‖p + ‖d∗α‖p | α ∈ Ak
}
.
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Proof. Let ω be a fixed harmonic form and let β(t) ∈ A for small t > 0 such that β(0) = α.
Computing the first variation of (1), we have

d

dt
F [β(t)]

∣∣∣∣
t=0

= p

�
M

‖dα‖p−2〈dα, dβ′(0)〉+ ‖d∗α‖p−2〈d∗α, d∗β′(0)〉

= p

�
M

〈∆pα, β
′(0)〉.

Next we compute the variation of the constraints so that

d

dt

�
M

‖β‖p
∣∣∣∣
t=0

= p

�
M

|α|p−2〈α, β′(0)〉

and

d

dt

�
M

‖β‖p−2〈β, ω〉
∣∣∣∣
t=0

= (p− 2)

�
M

‖α‖p−4〈α, β′(0)〉〈α, ω〉+ ‖α‖p−2〈β′(0), ω〉.

By Lagrange multiplier method, there must be some λ and µ such that for β ∈ Ωk(M),�
M

〈∆pα, β〉 = λ

�
M

‖α‖p−2〈α, β〉+ µ

�
M

‖α‖p−4〈α, β〉〈α, ω〉+ ‖α‖p−2〈β, ω〉.

Setting β = ω, we have

0 = µ

�
M

‖α‖p−4〈α, ω〉2 + ‖α‖p−2‖ω‖2

so that µ = 0. Therefore,
∆pα = λ‖α‖p−2α.

�1

4. Proof of theorem 1.12

We will consider the following integral�
M

〈∆pα,∆α〉 =

�
M

〈∆pα, dd
∗α〉+

�
M

〈∆p, d
∗dα〉.

Let α ∈ Ωk(M) be an eigenform satisfying (4). Then�
M

〈∆pα, d
∗dα〉 = λ

�
M

‖α‖p−2〈α, d∗dα〉

= λ

�
M

〈d(‖α‖p−2α), dα〉

= λ

�
M

〈d(‖α‖p−2) ∧ α, dα〉+ λ

�
M

‖α‖p−2‖dα‖2

(8)

and �
M

〈∆pα, dd
∗α〉 = λ

�
M

‖α‖p−2〈α, dd∗α〉

= λ

�
M

〈d∗(‖α‖p−2α), d∗α〉

= λ

�
M

‖α‖p−2‖d∗α‖2 − λ
�
M

〈ι∇‖α‖p−2α, d∗α〉.

(9)
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On the other hand, by using the Bochner-Weitzenböck formula (6) we have�
M

〈∆pα,∆α〉 = λ

�
M

‖α‖p−2〈α,∆α〉

= λ

�
M

(
(p− 2)‖α‖p−2|∇‖α‖|2 + ‖α‖p−2‖∇α‖2 + ‖α‖p−2(Wk(α), α)

)
.

(10)

Combining (8), (9), and (10), we obtain�
M

〈d(‖α‖p−2) ∧ α, dα〉 −
�
M

〈ι∇‖α‖p−2α, d∗α〉+

�
M

‖α‖p−2‖dα‖2 +

�
M

‖α‖p−2‖d∗α‖2

=

�
M

(
(p− 2)‖α‖p−2|∇‖α‖|2 + ‖α‖p−2‖∇α‖2 + ‖α‖p−2(Wk(α), α)

)
.

(11)

Using Lemma 2.2, the first term of (11) can be estimated as�
M

〈d(‖α‖p−2) ∧ α, dα〉 =

�
M

〈α, ι∇‖α‖p−2(dα)〉

≤
�
M

‖∇‖α‖p−2‖‖dα‖‖α‖

= (p− 2)

�
M

‖α‖
p−2
2 ‖∇‖α‖‖‖α‖

p−2
2 ‖dα‖

≤ (p− 2)

2

�
M

‖α‖p−2‖∇‖α‖‖2 +
(p− 2)

2

�
M

‖α‖p−2‖dα‖2

and similarly for the second term,

−
�
M

〈ι∇‖α‖p−2α, d∗α〉 ≤
�
M

‖∇‖α‖p−2‖α‖‖d∗α‖

= (p− 2)

�
M

‖α‖
p−2
2 ‖∇‖α‖‖‖α‖

p−2
2 ‖d∗α‖

≤ (p− 2)

2

�
M

‖α‖p−2‖∇‖α‖‖2 +
(p− 2)

2

�
M

‖α‖p−2‖d∗α‖2.

Applying these estimates to (11), we get

(p− 2) + 2

2

�
M

‖α‖p−2‖dα‖2 +
(p− 2) + 2

2

�
M

‖α‖p−2‖d∗α‖2

≥
�
M

‖α‖p−2‖∇α‖2 +

�
M

‖α‖p−2(Wk(α), α)

≥ 1

k + 1

�
M

‖α‖p−2‖dα‖2 +
1

n− k + 1

�
M

‖α‖p−2‖d∗α‖2 +

�
M

‖α‖p−2(Wk(α), α).

Let

C := max

{
k

k + 1
,

n− k
n− k + 1

}
.

Using
�
M

‖α‖p−2‖dα‖2 ≤
(�

M

‖α‖p
)1− 2

p
(�

M

‖dα‖p
) 2

p
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and
�
M

‖α‖p−2‖d∗α‖2 ≤
(�

M

‖α‖p
)1− 2

p
(�

M

‖d∗α‖p
) 2

p

,

we have (
C +

(p− 2)

2

)(�
M

‖α‖p
)1− 2

p

[(�
M

‖dα‖p
) 2

p

+

(�
M

‖d∗α‖p
) 2

p

]

≥
�
M

‖α‖p−2(Wk(α), α).

For p ≥ 2, and using the lower bound of the Weitzenböck curvature (5), we have

2
2
p
−1
(
C +

(p− 2)

2

)(�
M

‖α‖p
)1− 2

p
(�

M

‖dα‖p + ‖d∗α‖p
) 2

p

≥ k(n− k)H

�
M

‖α‖p.

Using the fact that
�
M
‖dα‖p + ‖d∗α‖p = λ

�
M
‖α‖p for eigenform α, we get

λ
2
p ≥ k(n− k)

2
2
p
−1
(
C + (p−2)

2

) .
5. Boundary conditions1

In this section we briefly discuss the situation of a compact manifold M with nonempty
smooth boundary ∂M . Let n denote the unit outer normal vector and let J : ∂M → M be
the inclusion. Then J∗α is the restriction of a form to the boundary. Then d and its adjoint
d∗ are related with an additional boundary term given by�

M

〈dα, β〉 =

�
M

〈α, d∗β〉+

�
∂M

〈J∗(α), ιnβ〉, α ∈ Ωk(M), β ∈ Ωk+1(M).

and the corresponding Green’s formula for the p-Laplacian is

(∆pα, β) =

�
M

‖dα‖p−2〈dα, dβ〉+

�
M

‖d∗α‖p−2〈d∗α, d∗β〉

−
�
∂M

〈ιn(‖dα‖p−2dα), J∗(β)〉+

�
∂M

〈‖d∗α‖p−2J∗(d∗α), ιnβ〉.

The two most common boundary conditions for the classical Laplacian eigenvalue problem
are the Dirichlet and Neumann boundary condition. For the Hodge-Laplacian, the analogous
boundary conditions are the absolute boundary condition{

ιnα = 0

ιndα = 0, on ∂M

and the relative boundary condition{
J∗(α) = 0

J∗(d∗α) = 0, on ∂M.
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The essential feature of the boundary condition is that if α satisfies either of the boundary
conditions, then ∆pα = 0 implies dα = 0 and d∗α = 0. The boundary terms that will be
introduced to (11) are�

M

〈d(‖α‖p−2) ∧ α, dα〉 −
�
M

〈ι∇‖α‖p−2α, d∗α〉+

�
M

‖α‖p−2‖dα‖2 +

�
M

‖α‖p−2‖d∗α‖2

−
�
∂M

‖α‖p−2〈J∗(α), ιn(dα)〉+

�
∂M

‖α‖p−2〈J∗(d∗α), ιn(α)〉

=

�
M

(
(p− 2)‖α‖p−2|∇‖α‖|2 + ‖α‖p−2‖∇α‖2 + ‖α‖p−2(Wk(α), α)

)
.

Since the boundary terms will vanish under either of the boundary conditions, we get the1

same estimate for the boundary value problem as well. It would be interesting to see what2

the Reilly formula, for instance a generalization of Theorem 3 in [10] would be in this context,3

however due to the asymmetry of the weight function in the p-Laplacian, it is not immediate4

what the appropriate Bochner-Weitzenböck type formula would be for ∆p.5

References6

[1] N. T. Dung, p-harmonic `-forms on Riemannian manifolds with a weighted Poincaré inequality, Non-7
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matics and Statistics, vol. 102, University of Jyväskylä, Jyväskylä, 2006. MR224202119
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