
MATH 124B: INTRODUCTION TO PDES AND FOURIER SERIES

SHO SETO

Contents

1. Fourier Series 1
1.1. Even, Odd, Period, and Complex functions 5
1.2. Orthogonality and General Fourier Series 6
1.3. Convergence and completeness 7
1.4. Proof of convergence 10
2. Harmonic functions 12
2.1. Laplace’s equation 12
2.2. Rectangles 15
2.3. Poisson’s Formula 16
2.4. Circles, Wedges, and Annuli 19
3. Green’s identities and Green’s functions 20
3.1. Green’s second identity 22
3.2. Green’s function 23
3.3. Half-space and sphere 24
4. General Eigenvalue Problem 26
4.1. Minimax principle 29
Appendix A. Some Linear Algebra 31

1. Fourier Series

Recall the homogeneous wave equation with Dirichlet boundary conditions

(1)


utt = c2uxx for 0 < x < L

u(0, t) = 0

u(L, t) = 0

with initial conditions {
u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

We look for special solutions to the above by using separation of variables, that is, assume the
solution takes the form

u(x, t) = F (x)G(t).

Plugging into (1), we obtain
G′′(t)

c2G(t)
=
F ′′(x)

F (x)

Date: September 5, 2016.
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2 SHO SETO

Since the right hand side is independent of the variable x and vice versa, we conclude that both
sides are equal to a constant, say −λ := −β2, β > 0. λ is positive since

F ′′(x) = −λF (x)

and we multiply both side by F (x) and integrate from 0 to L so that

−λ
∫ L

0

(F (x))2dx =

∫ L

0

F ′′(x)F (x)dx

= F ′(x)F (x)

∣∣∣∣L
0

−
∫ L

0

(F ′(x))2dx

= −
∫ L

0

(F ′(x))2dx ≤ 0.

Where we use the Dirichlet boundary condition in the second line. Hence we obtain a pair of
ODEs to solve the separated solution. That is{

F ′′(x) + β2F (x) = 0

G′′(t) + c2β2G(t) = 0.

These can be solved by finding the roots to the characteristic polynomials so that

F (x) = A cos(βx) +B sin(βx)

G(t) = C cos(βct) +D sin(βct),

where A,B,C,D are constants. Now we plug in the Dirichlet conditions:

F (0) = A = 0

and
F (L) = B sin(βL) = 0.

Assuming B 6= 0, we have that β = nπ
L

for n ∈ Z. Thus

λn =
(nπ
L

)2
are the possible eigenvalues and

Fn(x) = sin
(nπ
L
x
)

are solutions. Note that each sine function may be multiplied by an arbitrary constant and remains
a solution to the ODE. For each n, we obtain a solution

un(x, t) =

(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
sin
(nπ
L
x
)
,

where An and Bn are arbitrary constants Since the PDE is linear, any finite sum

u(x, t) =
∑
n

un(x, t)
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is also a solution. If we can choose An and Bn such that

(2) φ(x) =
∑
n

An sin
(nπ
L
x
)

and

ψ(x) =
∑
n

nπc

L
Bn sin

(nπ
L
x
)
,

then we get a solution with the given initial conditions. The question now is, when is it possible
to write φ and ψ in the given form? Infinite series of the form (2) are called Fourier sine series
on (0, L).

To obtain the coefficients, we use the following property for sine functions:

Lemma 1.1.
2

L

∫ L

0

sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

{
1 if m = n

0 if m 6= 0.

Proof. Using the trig identity

sinA sinB =
1

2
(cos(A−B)− cos(A+B)).

Then when

2

L

∫ L

0

sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

1

L

∫ L

0

cos

(
(n−m)π

L
x

)
− cos

(
(m+ n)π

L
x

)
dx

Evaluating gives the result. �

Remark 1.1. A similar proof shows orthogonality with the cosine functions as well.

Therefore, integrating against φ, all but one term vanishes. This gives us a formula for the
Fourier coefficients of the sine series

Am =
2

L

∫ L

0

φ(x) sin
(mπ
L
x
)
dx.

We also define the Fourier cosine series as

φ(x) =
1

2
A0 +

∞∑
n=1

An cos
(nπ
L
x
)
,

with the coefficient formula given by

Am =
2

L

∫ L

0

φ(x) cos
(mπ
L
x
)
dx.

Finally, summing the sine and cosine series, we obtain the full Fourier series of φ(x) defined on
−L < x < L.

φ(x) =
1

2
A0 +

∞∑
n=1

(
An cos

(nπ
L
x
)

+Bn sin
(nπ
L
x
))

.
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with the coefficients given by

An =
1

L

∫ L

−L
φ(x) cos

(nπ
L
x
)
dx, (n = 0, 1, 2, . . .)

Bn =
1

L

∫ L

−L
φ(x) sin

(nπ
L
x
)
dx, (n = 1, 2, . . .)

Example 1.1. Let φ(x) = 1 in the interval [0, L]. Computing the coefficients, we have

Am =
2

L

∫ L

0

sin
(mπ
L
x
)
dx

=
2

mπ
(1− (−1)m).

Therefore,

1 =
4

π

(
sin
(πx
L

)
+

1

3
sin

(
3πx

L

)
+

1

5
sin

(
5πx

L

)
+ · · ·

)
.

in (0, L).

Example 1.2. Let φ(x) = x in the interval (0, L). Its Fourier sine coefficients are

Am =
2

L

∫ L

0

x sin
(mπ
L
x
)
dx

= (−1)m+1 2L

mπ

so that

x =
2L

π

(
sin
(πx
L

)
− 1

2
sin

(
2πx

L

)
+

1

3
sin

(
3πx

L

)
− · · ·

)
.

Example 1.3. Next compute the cosine series for φ(x) = x. The coefficients are given by

A0 =
2

L

∫ L

0

xdx = L

Am =
2

L

∫ L

0

x cos
(mπx

L

)
dx

=
2L

m2π2
((−1)m − 1).

Thus in (0, L), we have

x =
L

2
− 4L

π2

(
cos

πx

L
+

1

9
cos

(
3πx

L

)
+

1

25
cos

(
5πx

L

)
+ · · ·

)
.

Example 1.4. Solve the problem 
utt = c2uxx

u(0, t) = 0 = u(L, t)

u(x, 0) = x

ut(x, 0) = 0.
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The expansion of a separated solution has the form

u(x, t) =
∞∑
n=1

(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
sin
(nπ
L
x
)

Differentiating this with respect to t yields

ut(x, t) =
∞∑
n=1

nπc

L

(
−An sin

(
nπct

L

)
+Bn cos

(
nπct

L

))
sin
(nπ
L
x
)

so that

ut(x, 0) =
∞∑
n=1

nπc

L
Bn sin

(nπx
L

)
hence Bn = 0 and

x = u(x, 0) =
∞∑
n=1

An sin
(nπx
L

)
.

Comparing with the Fourier sine series of x, we have that

An = (−1)n+1 2L

nπ

and so the solution is given by

u(x, t) =
2L

π

∞∑
n=1

(−1)n+1

n
sin
(nπx
L

)
cos

(
nπct

L

)
.

1.1. Even, Odd, Period, and Complex functions.

Definition 1.1. A function φ(x) that is defined for x ∈ R is called periodic if there is a number
p > 0 such that

φ(x+ p) = φ(x), for all x.

The number p is called the period of φ(x).

Proposition 1.1. If φ(x) has period p, then∫ a+p

a

φ(x)dx

does not depend on a.

Proof. By fundamental theorem of calculus,

d

da

∫ a+p

a

φ(x)dx = φ(a+ p)− φ(a)

= φ(a)− φ(a) = 0.

�
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If a function is defined only on an interval of length p, it can be extended to a function of period
p by taking its periodic extension: Let φ be defined on the interval −L < x < L. Then define
φper(x) by

φper(x) = φ(x− 2Lm) for − L+ 2Lm < x < L+ 2Lm

for all integers m. Another symmetry property a function may possess are the following

Definition 1.2. A function is even if

φ(x) = φ(−x)

and odd if
φ(−x) = −φ(x).

To ensure the definition makes sense, we require the function be defined on an interval (−L,L).

We define the even extension of a function defined on (0, L) to be

φeven(x) =

{
φ(x) for 0 < x < L

φ(−x) for − L < x < 0.

and its odd extension is

φodd(x) =


φ(x) for 0 < x < L

−φ(−x) for − L < x < 0

0 for x = 0.

Since sin(nπx/L) is odd, the Fourier sine series can be regarded as an expansion of an arbitrary
function that is odd and has period 2L defined on the whole line R. Likewise, since cos(nπx/L) is
even so the Fourier cosine series can be regarded an an expansion of an arbitrary function which is
even and has period 2L defined on the whole line R. Note that the Dirichlet boundary condition
corresponds to an odd extension, the Neumann to an even extension, and periodic boundary
conditions correspond to the periodic extension.

Since we can express the sine and cosine functions as complex exponential functions, we have a
way to express the Fourier series in complex form, namely

φ(x) =
∞∑

n=−∞

cne
inπx/L

with coefficients given by

cn =
1

2L

∫ L

−L
φ(x)e−inπx/L.

1.2. Orthogonality and General Fourier Series. Now we consider a more general setting.

Definition 1.3. For two real valued functions f and g defined on an interval (a, b), define their
(L2)-inner product to be

(f, g) =

∫ b

a

f(x)g(x)dx.

We also have the L2 norm

‖f‖2L2 = (f, f) =

∫ b

a

f 2dx.

f and g are orthogonal (with respect to the inner product) if (f, g) = 0.

The key property we use for Fourier series is that every eigenfunction is orthogonal to
every other eigenfunction.
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1.3. Convergence and completeness.

Definition 1.4. We say that an infinite series
∑
fn(x) converges to f(x) pointwise in (a, b) if it

converges to f(x) for each a < x < b, that is∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0, as N →∞.

Note that the rate of convergence depends on x.

Definition 1.5. We say that the series converges uniformly to f in [a, b] if

max
[a,b]

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞.

Note that the convergence is independent of the point x.

Definition 1.6. We say the series converges in L2 to f if∫ b

a

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣
2

dx→ 0 as N →∞.

In norm notation:

‖f −
N∑
n=1

fn‖L2 → 0 as N →∞.

Example 1.5. Let fn(x) = (1− x)xn−1 on 0 < x < 1. Then

N∑
n=1

fn(x) =
N∑
1

(xn−1 − xn) = 1− xN .

Since 0 < x < 1, xN → 0 as N → ∞. The convergence depends on x however so it is only
pointwise. However, it does converge in the L2 sense since∫ 1

0

|xN |2dx =
1

2N + 1
→ 0.

Example 1.6. Let

fn(x) =
n

1 + n2x2
− n− 1

1 + (n− 1)2x2

in the interval 0 < x < L. Then its partial sum is given by

N∑
n=1

fn(x) =
N

1 +N2x2
→ 0

as N →∞ when x > 0, hence converges pointwise. However in the L2 sense,∫ L

0

(
N∑
n=1

fn(x)

)2

dx = N

∫ NL

0

1

(1 + y2)2
dy →∞.

Furthermore, it does not converge uniformly since

max
(0,L)

N

1 +N2x2
= N
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Now we present 3 theorems on convergence of Fourier series.

Theorem 1.1 (Uniform Convergence). The Fourier series
∑
AnXn converges to f(x) uniformly

on [a, b] provided that

(1) f(x), f ′(x) and f ′′(x) exist and are continuous for a ≤ x ≤ b.

(2) f(x) satisfies the appropriate boundary conditions.

In fact, for the classical Fourier series, f ′′ is not required to exist.

Theorem 1.2 (L2 Convergence). The Fourier series converges to f(x) in the L2 sense in (a, b) if
f(x) ∈ L2(a, b).

Theorem 1.3 (Pointwise convergence for classical Fourier series). (1) The classical Fourier se-
ries converges to f(x) pointwise on (a, b) provided that f(x) is continuous on a ≤ x ≤ b
and f ′(x) is piecewise continuous on a ≤ x ≤ b, for example f(x) = |x| on [−1, 1].

(2) More generally, if f(x) is only piecewise continuous on a ≤ b ≤ b and f ′(x) is also piecewise
continuous on a ≤ x ≤ b, then the classical Fourier series converges (as an infinite sum) at
every point x. The sum is given by∑

n

AnXn(x) =
1

2
( lim
t→x+

f(t) + lim
t→x−

f(t))

for all a < x < b. Outside the interval, it is given by the corresponding extensions of f .

Example 1.7. The Fourier sine series of f(x) = 1 on (0, π) is

f(x) =
∞∑
n=0

4

(2n+ 1)π
sin((2n+ 1)x).

It does not converge uniformly since the end points are zero. Notice that this does not contradict
the convergence theorem since the sine series requires the Dirichlet boundary conditions. Note
that this example shows that the terms cannot in general be differentiated term by term, since
the derivative is f ′ = 0 however

4

π

∞∑
n=0

cos((2n+ 1)x)

is not a convergent series.

Theorem 1.4 (Least square approximation). Let {Xn} be any (L2) orthogonal set of functions.
Let ‖f‖ < ∞. Let N be a fixed positive integer. Among all possible choices of c1, . . . cN , the
choice that minimizes

‖f −
N∑
n=1

cNXn‖

is given by the Fourier coefficients ci = Ai.

Proof. For simplicity, assume we are working with real valued functions f and Xn. We want to
minimize

EN = ‖f −
∑
n≤N

cnXn‖2 = (f, f)− 2
∑
n≤N

cn(f,Xn) +
∑
n,m

cncm(Xn, Xm).
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By orthogonality, (Xn, Xm) = 0 except when n = m. Hence,

EN = ‖f‖2 − 2
∑
n≤N

cn(f,Xn) +
∑
n≤N

c2n‖Xn‖2.

We compute the square in cn so that

EN =
∑
n≤N

‖Xn‖2
(
cn −

(f,Xn)

‖Xn‖2

)2

+ ‖f‖2 −
∑
n≤N

(f,Xn)2

‖Xn‖2
.

Then the term containing cn is minimized when it is zero since it is nonnegative, i.e.

cn =
(f,Xn)

‖Xn‖
= An.

�

We can say a little more. We know that EN ≥ 0, hence

0 ≤ EN = ‖f‖2 −
∑
n≤N

A2
n‖Xn‖2.

Since this holds for all N , writing out explicitly the L2 norm, we obtain Bessel’s inequality

∞∑
n=1

A2
n

∫ b

a

|Xn(x)|2dx ≤
∫ b

a

|f(x)|2dx.

Furthermore, if EN → 0, we obtain the following:

Theorem 1.5 (Parseval’s equality). The Fourier series of f(x) converges in L2 if and only if

∞∑
n=1

|An|2
∫ b

a

|Xn(x)|2dx =

∫ b

a

|f(x)|2dx

Definition 1.7. The infinite orthogonal set {Xi(x)} is called complete if Parseval’s equality
holds for all ‖f‖ <∞.

Example 1.8. By applying Parseval’s identity to the sine series for f(x) = 1, we have

∑
nodd

(
4

nπ

)2 ∫ π

0

sin2(nx)dx =

∫ π

0

1dx

Integrating, we have ∑
nodd

(
4

nπ

)2
π

2
= π

which is another proof for obtaining the Basel sum (
∑

n
1
n2 ).
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1.4. Proof of convergence. For convenience, let L = π. For C1 function f which is 2π periodic.
Then the Fourier series is

f(x) =
1

2
A0 +

∞∑
n=1

(An cos(nx) +Bn sin(nx))

with coefficients given by

An =
1

π

∫ π

−π
f(y) cos(ny)dy

and

Bn =
1

π

∫ π

−π
f(y) sin(ny)dy.

Therefore the N -th partial sum, SN(x) is given by

SN(x) =
1

2π

∫ π

−π

(
1 + 2

N∑
n=1

(cos(ny) cos(nx) + sin(ny) sin(nx)

)
f(y)dy.

Using the cosine summation formula cos(A+ B) = cos(A) cos(B)− sin(A) sin(B), we rewrite the
above as

SN(x) =
1

2π

∫ π

−π
KN(x− y)f(y)dy

where

KN(θ) := 1 + 2
N∑
n=1

cos(nθ).

The function KN(θ) is called the Dirichlet kernel. Note that

1

2π

∫ π

−π
KN(θ)dθ = 1

and in fact, can be expressed as

KN(θ) =
sin((N + 1

2
)θ)

sin(1
2
θ)

To see this, we rewrite as a finite geometric series

KN(θ) = 1 +
N∑
n=1

(einθ + e−inθ)

=
N∑

n=−N

einθ

=
e−iNθ − ei(N+1)θ

1− eiθ

=
e−i(N+ 1

2
)θ − ei(N+ 1

2
)θ

−e iθ2 + e−
iθ
2

=
sin((N + 1

2
)θ)

sin(1
2
θ)

.
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Proof of pointwise convergence of classical Fourier series. By changing variables to θ = y−x and
using the evenness of KN , we have

SN(x) =
1

2π

∫ π

−π
KN(θ)f(x+ θ)dθ.

Using the fact that the integral of the Dirichlet kernel is 1, we have

SN(x)− f(x) =
1

2π

∫ π

−π
KN(θ)(f(x+ θ)− f(x))dθ

=
1

2π

∫ π

−π
g(θ) sin((N +

1

2
)θ)dθ,

where

g(θ) =
f(x+ θ)− f(x)

sin(1
2
θ)

.

It remains to show that the integral tends to zero as N →∞. Since the functions

φN(θ) = sin((N +
1

2
)θ), N = 1, 2, 3, . . .

form an orthogonal set on the interval (0, π), and therefore on (−π, π), Bessel’s inequality holds:

∞∑
N=1

|(g, φN)|2

‖φN‖2
≤ ‖g‖2.

Since ‖φN‖2 = π, if ‖g‖ < ∞, then the infinite sum converges, i.e. (g, φN) → 0 as N → ∞. To
check that ‖g‖ is finite, we have

‖g‖2 =

∫ π

−π

(f(x+ θ)− f(x))2

sin2(1
2
θ)

dθ.

Since

lim
θ→0

g(θ) = 2f ′(x)

as long as f ′ exists. �

Proof of uniform convergence. Assume that f and f ′(x) are continuous with period 2π. Let An
and Bn be the Fourier coefficients for f(x) and A′n and B′n be the Fourier coefficients of f ′(x).
They are related by {

An = − 1
n
B′n

Bn = 1
n
A′n.

It can be shown by Bessel’s inequality that

∞∑
n=1

(|A′n|2 + |B′n|2) ≤
‖f ′‖2

π
<∞
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Therefore
∞∑
n=1

(|An cos(nx)|+ |Bn sin(nx)|) ≤
∞∑
n=1

(|An|+ |Bn|)

=
∞∑
n=1

1

n
(|B′n|+ |A′n|)

≤

(
∞∑
n=1

1

n2

)1/2( ∞∑
n=1

2(|A′n|2 + |B′n|2)

)1/2

<∞.

Therefore, from pointwise convergence, we have

max |f(x)− SN(x)| ≤ max
∞∑
N+1

|An cos(nx) +Bn sin(nx)| ≤
∞∑
N+1

(|An|+ |Bn|)→ 0

as N →∞. �

2. Harmonic functions

2.1. Laplace’s equation. The stationary heat or wave equation

uxx = 0,

or in higher dimensions

∆u := div(∇u) =
n∑
i=1

∂2u

∂x2i
= 0

is called the Laplace equation, and its solutions are called harmonic functions. The inhomo-
geneous version

∆u = f

for a given function f is called Poisson’s equation. Just like the heat and wave equations, we
can give Laplace equations The first thing we will prove is the maximum principle.

Theorem 2.1 (Maximum principle). Let D be a connected bounded open set in Rn. Let u be
harmonic in D and continuous on D. Then the maximum and minimum values of u are attained
on ∂D, the boundary of D and nowhere inside unless u is a constant.

Proof. Let ε > 0 and define
vε(x) = u(x)− ε‖x‖2, x ∈ Rn.

Then
∆vε = −2nε < 0.

Suppose x0 ∈ D is a local minimum. Then ∆vε ≥ 0, a contradiction, hence there is no local
minimum in the interior of D. Let x0 ∈ ∂D be the minimum for vε. Since

u(x) ≥ v(x) ≥ vε(x0) = u(x0)− ε‖x0‖2

holds for all x ∈ D and for all ε, we have

u(x) ≥ min
∂D

u.

Repeating the argument for vε = u+ ε‖x‖2 gives us the maximum. �
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2.1.1. Uniqueness. The maximum principle can be used to prove the uniqueness of solutions for
the Poisson equation with Dirichlet condition{

∆u = f in D

u = h on ∂D.

Suppose that v is another solution to the Poisson equation with same boundary conditions. Then
u− v is harmonic and 0 on the boundary, hence by the maximum principle u = v on D.

2.1.2. Invariance. The Laplace equation is invariant under rigid motion. We show this explicitly
in 2 and 3 dimensions. For two dimensions, translation is obvious. Consider a rotation in the
plane by angle θ. It can be given by the transformation

(x′, y′) = (x cos θ + y sin θ,−x sin θ + y cos θ).

Changing variables, we have

∂u

∂x
=
∂u

∂x′
∂x′

∂x
+
∂u

∂y′
∂y′

∂x
= ux′ cos θ − uy′ sin θ.

and

∂2u

∂x2
= (ux′ cos θ − uỹ′ sin θ)x′ cos θ − (ux′ cos θ − uỹ′ sin θ)y′ sin θ.

by a similar computation, we obtain

uxx + uyy = (ux′x′ + uy′y′)(cos2 θ + sin2 θ) = ux′x′ + uy′y′

therefore, the Laplacian is rotationally invariant. In polar coordinates, x = r cos θ, y = r sin θ, the
Laplacian is given by

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

A rotationally symmetric solution, i.e. u(r, θ) = u(r) is given by

u(r) = c1 log r + c2.

In higher dimensions, we can show rotational invariance through some linear algebra. We define
a rotation in Rn, to be a transformation given by an orthogonal matrix, i.e.

~x′ = B~x

where B ∈ O(n) = {B is an n × n matrix such that BTB = BBT = I}. Then the Laplacian is
the trace of the Hessian matrix of u hence

Tr(Hessu(x)) = Tr(BT Hessu(x′)B) = Tr(Hessu(x′)BTB) = Tr(Hessu(x′)).

In spherical coordinates,

x = s cosφ

y = s sinφ

z = r cos θ

s = r sin θ,
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we can view this as a change of coordinates from (x, y, z) to cylindrical coordinates (s, φ, z), then
to spherical (r, θ, φ). Since z is fixed in the first transformation, we can apply the 2 dimensional
change of coordinates so that

uxx + uyy = uss +
1

s
us +

1

s2
uφφ.

In the second change of coordinates, φ is fixed so that

uzz + uss = urr +
1

r
ur +

1

r2
uθθ.

Combining, we have

uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ +

1

s
us +

1

s2
uφφ.

By chain rule,

us = urrs + uθθs + uφφs

= ur
s

r
+ uθ

cos θ

r

so that

∆u = urr +
2

r
ur +

1

r2

(
uθθ + (cot θ)uθ +

1

sin2 θ
uφφ

)
.

The rotationally symmetric solutions in 3 dimensions is given by

u = −c1r−1 + c2.

Example 2.1. If the domain that we are dealing with is rotationally symmetric, one strategy
is to convert the Laplace or Poisson equation into polar coordinates. For example, consider the
Dirichlet problem {

uxx + uyy = 1 in r < a

u = 0 on r = a.

Since the domain is rotationally symmetric with rotationally symmetric boundary condition, the
solution should depend only on r. In polar coordinates,

urr +
1

r
ur = 1.

We can view this as a first order equation of ur, hence multiplying by the integrating factor, we
have

(rur)r = r.

Integrating twice, we have

u(r) =
1

4
r2 + c1 ln(r) + c2.

Inserting the boundary condition, we have

0 =
a2

4
+ c1 ln(a) + c2.

hence we get a relation between the coefficients c1 and c2.
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2.2. Rectangles. We will give explicit solutions over rectangles and cubes. Let D be a rectangle,
that is

D = {(x, y) ∈ R2 | 0 < x < a, 0 < y < b}
Example 2.2. We will find harmonic functions on D with the given boundary conditions

For simplicity, assume h = k = j = 0. We will find a separated solution, so assume u(x, y) =
X(x)Y (y). Then the Laplace equation can be rewritten as

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0.

Hence, there is a constant such that X ′′+ λX = 0 and Y ′′− λY = 0. Since X(0) = X ′(a) = 0, we
can show that λ = β2 > 0. In fact, the explicit eigenfunctions and eigenvalues are{

Xn(x) = sin
(

(n+ 1
2
)πx

a

)
β2
n = λn =

(
n+ 1

2

)2 π2

a2
.

Next we solve for
Y ′′ − λY = 0 with Y ′(0) + Y (0) = 0.

Since this is a constant coefficient second order ODE with λ > 0, we have

Y (y) = A cosh(βny) +B sinh(βny).

Inserting the boundary conditions, we have

0 = Y ′(0) + Y (0) = Bβn + A.

For convenience, let B = −1, so that A = βn. Then

Y (y) = βn cosh(βny)− sinh(βny).

Therefore, we can formally add the solutions XnYn to obtain

u(x, y) =
∞∑
n=0

An sin(βnx)(βn cosh(βny)− sinh(βny)).

This satisfies the 3 boundary conditions. It remains to insert the last boundary condition:

g(x) =
∞∑
n=0

An(βn cosh(βnb)− sinh(βnb)) sin(βnx).

This is a Fourier sine series hence we can use the Fourier coefficient formula to get

An =
2

a
(βn cosh(βnb)− sinh(βnb))

−1
∫ a

0

g(x) sin(βnx)dx.
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2.3. Poisson’s Formula. Next we discuss the Dirichlet problem for a circle,{
uxx + uyy = 0 for x2 + y2 < a2

u = h(θ) for x2 + y2 = a2

We consider separated solutions u(r, θ) = R(r)Θ(θ) so that

0 = R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′.

Dividing by RΘ and multiplying by r2, we obtain{
Θ′′ + λΘ = 0

r2R′′ + rR′ − λR = 0.

For the angular component, we give periodic boundary conditions:

Θ(θ + 2π) = Θ(θ)

Hence we get explicit solutions

Θ(θ) = A cos(nθ) +B sin(nθ)

with λ = n2, (n = 0, 1, 2, . . .).
In the radial direction, the ODE is of Euler type hence we assume that the solution is of the

form R(r) = rα so that
α(α− 1)rα + αrα − n2rα = 0,

hence α = ±n, so R(r) = c1r
n + c2r

−n. Combining the angular and radial solutions, we have

u(r, θ) = (c1r
n + c2r

−n)(A cos(nθ) +B sin(nθ))

for n = 1, 2, . . .. For n = 0, we have

u = c1 + c2 log(r)

Since u is harmonic, and hence continuous on D, we do not consider the solutions r−n and log r
which are discontinuous at r = 0. Hence, summing the solutions, we have

u(r, θ) =
1

2
A0 +

∞∑
n=1

rn(An cos(nθ) +Bn sin(nθ)).

Inserting the Dirichlet boundary condition, we have

h(θ) =
1

2
A0 +

∞∑
n=1

an(An cos(nθ) +Bn sin(nθ)).

Since this is the Fourier series for h(θ), we have the formulas for the coefficients

An =
1

πan

∫ 2π

0

h(φ) cos(nφ)dφ

Bn =
1

πan

∫ 2π

0

h(φ) sin(nφ)dφ
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Much like the Dirichlet kernel, we can find a closed form. Plugging in the Fourier coefficient
formulas into the solution, we have

u(r, θ) =
1

2π

∫ 2π

0

h(φ)dφ+
∞∑
n=1

rn

πan

∫ 2π

0

h(φ)(cos(nφ) cos(nθ) + sin(nφ) sin(nθ))dφ

=
1

2π

∫ 2π

0

h(φ)

(
1 + 2

∞∑
n=1

(r
a

)n
cos(n(θ − φ))

)
dφ

By expressing cosine in terms of the complex exponential, we have

1 +
∞∑
n=1

(r
a

)n
ein(θ−φ) +

∞∑
n=1

(r
a

)n
e−in(θ−φ)

= 1 +
rei(θ−φ)

a− rei(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.

Inserting this, we obtain Poisson’s formula

u(r, θ) =
(a2 − r2)

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

This formula can be used to express any harmonic function inside a circle in terms of its boundary
values. In vector notation, viewing points as vectors originating from 0,

u(~x) =
a2 − |~x|2

2πa

∫
|~y|=a

u(~y)

|~x− ~y|2
ds

Theorem 2.2. Let h(φ) = u(~y) be any continuous function on the circle C = ∂D. Then the
Poisson formula provides the only harmonic function in D for which

lim
x→x0

u(x) = h(x0)

for all x0 ∈ C.

Proof. We define the Poisson kernel

P (r, θ) =
a2 − r2

a2 − 2ar cos θ + r2

so that

u(r, θ) =
1

2π

∫ 2π

0

P (r, θ − φ)h(φ)dφ

for r < a. The Poisson kernel has the following properties

(1) P (r, θ) > 0 for r < a.

(2)
∫ 2π

0
P (r, θ)dθ = 2π
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(3) P is harmonic inside the circle.

Now u(r, θ) is harmonic since P is harmonic and we can differentiate under the integral sign in
this situation (P (r, θ) needs to be continuous in the compact interval). Now we need to show the
limit, so fix an angle θ0, and consider r near a, then

u(r, θ0)− h(θ0) =
1

2π

∫ 2π

0

P (r, θ0 − φ)(h(φ)− h(θ0))dφ.

First we will show that the kernel is concentrated at θ = 0, that is, for any ε > 0, and for each
δ ≤ θ

2
≤ π − δ, we can find an r sufficiently close to a so that

|P (r, θ)| = a2 − r2

a2 − 2ar cos θ + r2
=

a2 − r2

(a− r)2 + 4ar sin2(θ/2)
≤ a2 − r2

(a− r)2 + 4ar sin2(δ)
< ε.

Using this r, we have that

|u(r, θ0)− h(θ0)| ≤
ε

2π

∫ θ0+δ

θ0−δ
P (r, θ0 − φ)dφ+

ε

2π

∫
|φ−θ0|>δ

|h(φ)− h(θ0)|dφ

≤ (1 + 2H)ε,

where δ > 0 was chosen so that |h(φ) − h(θ0)| < ε whenever |φ − θ0| < δ and |h| ≤ H for some
constant H, since h is continuous. �

We can apply the Poisson formula to obtain the mean value property and the maximum principle:

Proposition 2.1 (Mean Value Property). Let u be harmonic in a disk D, continuous up to the
boundary. Then the value of u at the center of D equals the average of u on its circumference.

Proof. Let x = 0 in the Poisson formula, then

u(0) =
1

2πa

∫
|y|=a

u(y)ds

�

Proposition 2.2 ((Strong) Maximum Principle). Let u be harmonic in D. If the maximum is
attained in the interior, then u is a constant. Let xM ∈ D be the maximum point. Then

u(x) ≤ u(xM) = M, for all x ∈ D.

Proof. By applying mean value property at this point, we have

M = u(xM) = average on circle ≤M

so that u = M on the circle. Repeating the argument, we can fill the domain D with circles so
that u is a constant on D, if max is attained in the interior. �

Proposition 2.3 (Differentiability). Let u be a harmonic function in any open set D of the plane.
Then u(~x) = u(x, y) possesses all partial derivatives of all orders in D.

Roughly, by the Poisson integral formula, we see that the integrand is differentiable and does
not require the differentiability of the original function.
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2.4. Circles, Wedges, and Annuli. We define the following domains:

Wedge: {(r, θ) | 0 < θ < θ0, 0 < r < a}
Annulus: {(r, θ) | 0 < a < r < b}

Exterior of a circle: {(r, θ) | a < r <∞}.

2.4.1. Wedge. We consider Laplace equation with homogeneous Dirichlet condition on the straight
sides and an inhomogeneous Neumann condition on the circular side:

∆u = 0

u(r, 0) = u(r, β) = 0
∂u
∂r

(a, θ) = h(θ).

By separation of variables, we get the two ODEs{
r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0.

Inserting the homogeneous conditions gives us Θ(0) = Θ(β) = 0, hence we have a solutionΘn(θ) = sin
(
nπθ
β

)
λn =

(
nπ
β

)2
.

In the radial direction, we have
r2R′′ + rR′ − λR = 0

This is of Euler type and has the solution R(r) = rα, where α2 = λ. Throwing out the singular
solutions, we have the solution

u(r, θ) =
∞∑
n=1

Anr
nπ/β sin

(
nπθ

β

)
.

With the inhomogenous boundary condition, we view it as a Fourier sine series with coefficients

An = a1−nπ/β
2

nπ

∫ β

0

h(θ) sin

(
nπθ

β

)
dθ.

2.4.2. Annulus. Consider the Dirichlet problem for the annulus in 2 dimensions,
uxx + uyy = 0 in 0 < a2 < x2 + y2 < b2

u = g(θ) for r = a

u = h(θ) for r = b.

Since r 6= 0, we use the solutions of the circle except that we can now include the singular (in the
circle case) terms so

u(r, θ) =
1

2
(C0 +D0 log r) +

∞∑
n=1

(Cnr
n +Dnr

−n) cos(nθ) + (Anr
n +Bnr

−n) sin(nθ).
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Plugging in the boundary conditions, and noting that {1, cos(nθ), sin(nθ)} are orthogonal on the
interval (0, 2π), we have the relations{

Ana
n +Bna

−n = 1
2π

∫ 2π

0
g(θ) sin(nθ)dθ

Anb
n +Bnb

−n = 1
2π

∫ 2π

0
h(θ) sin(nθ)dθ

and similarly for the constant and cosine terms. In matrix form, this is equivalent to solving for(
an a−n

bn b−n

)(
An
Bn

)
=

(
αn
βn

)
where a, b are given and αn, βn are the corresponding Fourier coefficients. The determinant of the
matrix is nonzero as long as a 6= b and has a unique solution.

2.4.3. Exterior of a circle. We consider the Dirichlet problem for the exterior of a circle in 2
dimensions 

uxx + uyy = 0 for x2 + y2 > a2

u = h(θ) for r = a

u is bounded

We can solve this in the same way as a circle again however, the condition u being bounded implies
that there are no terms rn since rn →∞ as r →∞. Hence we only keep the terms r−n. Therefore,

u(r, θ) =
1

2
A0 +

∞∑
n=1

r−n(An cos(nθ) +Bn sin(nθ)).

Incorporating the boundary condition, we have

An =
an

π

∫ π

−π
h(θ) cos(nθ)dθ

and

Bn =
an

π

∫ π

−π
h(θ) sin(nθ)dθ.

Furthermore, there is a corresponding Poisson formula in this case given by

u(r, θ) =
(r2 − a2)

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

3. Green’s identities and Green’s functions

In this section, we present a way to solve Laplace’s equation on more general domains. Recall
the divergence theorem, let D be a bounded region and F a vector field defined on D. Then∫∫∫

D

divFdV =

∫∫
∂D

F · ndS

where n is the unit outer normal vector of ∂D.
We first prove Green’s first identity, for u, v real valued functions,∫∫

∂D

v
∂u

∂n
dS =

∫∫∫
D

∇v · ∇udx+

∫∫∫
D

v∆udx.
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This is a simple consequence of the divergence theorem and the product rule

div(v∇u) = ∇v · ∇u+ v∆u.

Setting v = 1, we have ∫∫
∂D

∂u

∂n
dS =

∫∫∫
D

∆udx.

We can apply this to obtain a necessary solution for the solution to exist for the Neumann problem
in any domain D: If {

∆u = f in D
∂u
∂n

= h on ∂D,

Then integrating over D we have ∫∫
∂D

hdS =

∫∫∫
D

fdV.

Hence, for a solution to exist, the above must be satisfied between the boundary data and the
inhomogeneous term.

3.0.1. Mean value property. We also show a mean value property for harmonic functions in 3
dimensions. Let B be a ball of radius a. Suppose ∆u = 0 on B. On a sphere, we have the normal
direction being the same as the radial direction, hence

∂u

∂n
=
∂u

∂r
.

Therefore, plugging into Green’s first identity, we obtain∫∫
∂B

∂u

∂r
dS = 0.

In spherical coordinates, the surface integral is given by∫ 2π

0

∫ π

0

ur(a, θ, φ)a2 sin(φ)dφdθ = 0.

Dividing out the constant by 4πa2 and moving the r derivative outside the integral, we get

∂

∂r

(
1

4π

∫ 2π

0

∫ π

0

u(r, θ, φ) sin(φ)dφdθ

)∣∣∣∣
r=a

= 0.

Note that this holds for all r = a. Hence we see that the quantity

1

4π

∫ 2π

0

∫ π

0

u(r, θ, φ) sin(φ)dφdθ =
1

A(∂B)

∫∫
∂B

udS

is independent of r. Taking the limit r → 0, we get

1

4π

∫ 2π

0

∫ π

0

u(0) sin(φ)dφdθ = u(0),

hence
1

A(∂B)

∫∫
∂B

udS = u(0).

This proves the mean value property in three dimensions. From the mean value property, we
automatically have the maximum principle

Proposition 3.1. If D is any solid region, a nonconstant harmonic function in D cannot take its
maximum value inside D, but only on ∂D.
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3.0.2. Uniqueness of Dirichlet problem. Given two harmonic functions u1 and u2 with the same
boundary data, their difference u := u1 − u2 is harmonic and is zero at the boundary. Using
Green’s first identity with v = u, we obtain

0 =

∫∫
∂D

u
∂u

∂n
dS =

∫∫∫
D

|∇u|2dV.

Hence |∇u| = 0 and u is a constant in D. Since the boundary is 0, we have that u = 0. This
establishes the uniqueness.

We define the term on the right as the following

Definition 3.1. Define the energy of u as

E[u] =
1

2

∫∫∫
D

|∇u|2dV.

We have the following

Proposition 3.2 (Dirichlet principle). Let u be the unique harmonic function in D with boundary
data u = h(x) on ∂D. Let w be any other function with the same boundary data. Then the
harmonic function u is the minimizer of the energy, i.e.

E[w] ≥ E[u].

Proof. Let v := u− w. Then

E[w] =
1

2

∫∫∫
D

|∇(u− v)|2dV

= E[u] + E[v]

where the mixed term vanish by applying Green’s first identity. �

3.1. Green’s second identity. By subtracting Green’s first identity, we have Green’s second
identity ∫∫∫

D

u∆v − v∆u)dV =

∫∫
∂D

(
u
∂v

∂n
− v ∂u

∂n

)
dS.

3.1.1. Representation formula. Much like the Poisson formula, we want to obtain a integral rep-
resentation for any harmonic function. We have the following

Theorem 3.1. In dimension 3, if ∆u = 0 in D, then

u(x0) =
1

4π

∫∫
∂D

(
−u(x)

∂

∂n

(
1

‖x− x0‖

)
+

1

‖x− x0‖
∂u

∂n

)
dS.

Proof. Choose polar coordinates centered at x0. Apply Green’s second identity with v = − 1
4πr

.
Let Dε = D −B(x0, ε).
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Then ∆u = 0 and ∆v = 0 in Dε. Apply Green’s second identity to this pair to obtain

−
∫∫

∂Dε

(
u
∂

∂n

(
1

r

)
− ∂u

∂n

1

r

)
dS = 0.

Now the boundary ∂Dε consists of 2 parts, with the normal vector for the inner sphere pointing
inward so that ∂

∂n
= − ∂

∂r
, thus

−
∫∫

∂D

(
u
∂

∂n

(
1

r

)
− ∂u

∂n

1

r

)
dS = −

∫∫
r=ε

(
u
∂

∂r

(
1

r

)
− ∂u

∂r

1

r

)
dS.

This holds for any small ε > 0. We now take the limit as ε→ 0. On {r = ε}, we have

∂

∂r

(
1

r

)
= − 1

r2
= − 1

ε2
,

Hence

−
∫∫

r=ε

(
u
∂

∂r

(
1

r

)
− ∂u

∂r

1

r

)
dS =

1

ε2

∫∫
r=ε

udS +
1

ε

∫∫
r=ε

∂u

∂r
dS

= 4πū+ 4πε
∂̄u

∂r
,

where the bar denotes the average of the function on the sphere r = ε. Let ε→ 0 so that the last
term equals 4πu(0). This gives the integral formula. �

3.2. Green’s function. We investigate further the nature of the integral formulas.

Definition 3.2. The Green’s function G(x, x0) for the operator −∆ and the domain D at the
point x0 ∈ D is a function defined for x ∈ D such that

(1) G(x, x0) possesses continuous second derivatives and ∆G = 0 in D except at the point x0.

(2) G = 0 on ∂D.

(3) The function G(x, x0) + 1
4π‖x−x0‖ is finite at x0 and has continuous second derivatives

everywhere and is harmonic at x0.

Theorem 3.2. If G(x, x0) is the Green’s function, then the solution for the Dirichlet problem is
given by the formula

u(x0) =

∫∫
∂D

u(x)
∂G(x, x0)

∂n
dS.

Proof. By the representation formula, we have

u(x0) =

∫∫
∂D

(
u
∂v

∂n
− ∂u

∂n
v

)
dS,

where v(x) = − 1
4π‖x−x0‖ . Define H(x) := G(x, x0)− v(x). Then H is harmonic in D by definition

of the Green’s function. Applying Green’s second identity to u and H, we have

0 =

∫∫
∂D

(
u
∂H

∂n
− ∂u

∂n
H

)
dS.

Since G = H + v, adding the representation formula and the identity, we obtain

u(x0) =

∫∫
∂D

(
u
∂G

∂n
− ∂u

∂n
G

)
dS.

Since G vanishes on ∂D, the second term vanishes we we obtain the integral formula. �
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3.2.1. Symmetry of Green’s function.

Proposition 3.3. For any a, b ∈ D, where D is some bounded region,

G(a, b) = G(b, a).

Proof. Let u(x) = G(x, a) and v(x) = G(x, b). Let Dε = D −B(a, ε)−B(b, ε).

By Green’s second identity, we have∫∫∫
Dε

(u∆v − v∆u)dx =

∫∫
∂D

(
u
∂v

∂n
− v ∂u

∂n

)
dS

+

∫∫
|x−a|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dS +

∫∫
|x−b|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dS.

Since the Green’s function vanishes on ∂D and is harmonic in the deleted neighborhood, we have∫∫
|x−a|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dS +

∫∫
|x−b|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dS = 0.

This holds for any ε. Now we focus on the a term. Let r = |x − a|, and on the sphere, we have
∂
∂n

== ∂
∂r

so that∫∫
r=ε

[(
− 1

4πr
+H

)
∂v

∂n
− v ∂

∂n

(
− 1

4πr
+H

)]
r2 sinφdφdθ

=

∫∫
r=ε

(
− 1

4πr

∂v

∂n
+ v

∂

∂n

(
1

4πr

))
r2 sinφdφdθ +

∫∫
r=ε

(
H
∂v

∂n
− v∂H

∂n

)
r2 sinφdφdθ

= − 1

4π

∫∫
r=ε

v sinφdφdθ.

By mean value property, the last is

lim
ε→0

∫ 2π

0

∫ π

0

v

4πε2
ε2 sinφdφdθ = v(a).

and similarly, we have ∫∫
|x−b|=ε

(
u
∂v

∂n
− v ∂u

∂n

)
dS → −u(b)

hence
0 = v(a)− u(b) = G(a, b)−G(b, a).

�

3.3. Half-space and sphere.
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3.3.1. Solutions on half-space. We will first determine the Green’s function for a half-space in three
dimensions. Let D := {x = (x, y, z) ∈ R3 | z > 0}. Define a reflected point as x∗ = (x, y,−z).
Then the Green’s function for D is given by

G(x,x0) = − 1

4π‖x− x0‖
+

1

4π‖x− x∗0‖
.

We need to check the three properties of the Green’s function.

(1) G is finite and differentiable except at x0. Using polar coordinates centered at x0, we see
that ∆G = 0.

(2) By symmetry, we see that G = 0 on ∂D.

(3) Since G+
1

4π‖x− x0‖
=

1

4π‖x− x∗0‖
has no singularities, hence is harmonic at x0.

Now we use the Green’s function to solve{
∆u = 0 for z > 0

u(x, y, 0) = h(x, y).

Since the unit normal is (0, 0,−1), we have
∂G

∂n
= −∂G

∂z
|z=0. Now

∂G

∂n
= −∂G

∂z

∣∣∣∣
z=0

=
1

4π

(
z + z0
‖x− x∗0‖3

− z − z0
‖x− x0‖3

)∣∣∣∣
z=0

=
1

2π

z0
‖x− x0‖3

.

Therefore, we have the solution to the Laplace equation on the half space as

u(x0, y0, z0) =
z0
2π

∫∫
R2

h(x, y)dxdy

((x− x0)2 + (y − y0)2 + z20)
3
2

3.3.2. Solutions on Sphere. We compute the Green’s function on the ball D = {‖x‖ < a}. Define
the reflected point of a ball by

x∗0 =
a2x0

‖x0‖2
.

Let ‖x− x0‖ = r and ‖x− x∗0‖ = r∗. We claim that the Green’s function for the ball is

G(x,x0) = − 1

4πr
+

a

4π‖x0‖r∗

for x0 6= 0, and

G(x, 0) = − 1

4π‖x‖
+

1

4πa
.

For x0 6= 0, we check the three properties. The first and third properties are straightforward since
x∗0 lies outside the circle, and we can use polar coordinates with different centers. For the second
property, we notice that for ‖x‖ = a, we have∥∥∥∥r0a x− a

r0
x0

∥∥∥∥ = ‖x− x0‖,
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where r0 = ‖x0‖. Factoring out r0
a

, we get

r0
a
r∗ = r

for any ‖x‖ = a, hence G = 0 on the sphere ‖x‖ = a.
Now we use the Green’s function to give a formula for the solution of the Dirichlet problem in

a ball in dimension 3, {
∆u = 0 in ‖x‖ < a

u = h on ‖x‖ = a.

First consider x0 6= 0. We need to calculate ∂G
∂n

on the boundary ‖x‖ = a.
Now r2 = ‖x − x0‖2, hence 2r∇r = 2(x − x0) so that ∇r = x−x0

r
and similarly for r∗. Also

computing,

∇G =
x− x0

4πr3
− a

r0

x− x∗0
4π(r∗)3

.

Using the fact that x∗0 = a2

r20
x0 and for ‖x‖ = a, r∗ = a

r0
r, we have

∇G =
1

4πr3

(
x− x0 −

r20
a2

x + x0

)
on the surface, hence

∂G

∂n
= ∇G · x

a
=
a2 − r20
4πar3

.

Inserting this in to the integral formula, we obtain

u(x0) =
a2 − ‖x0‖2

4πa

∫∫
‖x‖=a

h(x)

‖x− x0‖3
dS.

In 2 dimensions, the Green function is given by

G(x,x0) =
1

2π
log ‖x− x0‖ −

1

2π
log

(
‖x0‖
a
‖x− x∗0‖

)
,

where the third property is replaced by 1
2π

log ‖x− x0‖.

4. General Eigenvalue Problem

Throughout this section, we will use the L2 inner product and norm,

(f, g) =

∫∫∫
D

f(x)g(x)dx

‖f‖2 = (f, f).

We now consider the Dirichlet eigenvalue problem{
∆u+ λu = 0 in D

u = 0 on ∂D.
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where D is an arbitrary domain (open) in 3 dimensions, with smooth boundary. We denote the
eigenvalues by

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
repeating up to multiplicity.

Consider the minimum problem:

m = min

{
‖∇w‖2

‖w‖2
| w = 0 on ∂D,w 6≡ 0

}
.

The quotient we minimize is called the Rayleigh quotient.

Theorem 4.1. Assume that u(x) is a solution to the minimum problem. Then the value of the
minimum equals the smallest eigenvalue λ1 of the Dirichlet problem and u(x) is its eigenfunction,
i.e.

λ1 = min

{
‖∇w‖2

‖w‖2
| w = 0 on ∂D,w 6≡ 0

}
, and −∆u = λ1u, in D.

Proof. Consider a test function w, which is any C2 function w such that w = 0 on ∂D and w 6≡ 0.
By assumption, we have

m =
‖∇u‖2

‖u‖2
≤ ‖∇w‖

2

‖w‖2

for any test function w, where m is the minimum. Let v be any test function and consider
w := u+ εv, ε is any constant. Then the function

f(ε) =
‖∇(u+ εv)‖2

‖u+ εv‖2
=
‖∇u‖2 + 2ε(∇u,∇v) + ‖∇v‖2

‖u‖2 + 2ε(u, v) + ‖∇v‖2

has a minimum at ε = 0, hence f ′(0) = 0. Computing, we have

0 = f ′(0) =
2‖u‖2(∇u,∇v)− 2‖∇u‖2(u, v)

‖u‖4
.

Therefore, we have
(∇u,∇v) = m(u, v).

Integrating by parts, or by Green’s first identity, we have

(∆u+mu, v) = 0

which holds for all test functions v, therefore m is an eigenvalue for −∆ with eigenfunction u. To
show that m is the smallest eigenvalue, let −∆vj = λjvj where λj is any other eigenvalue. Then

m ≤ ‖∇vj‖
2

‖v‖2
= λj.

�

Theorem 4.2. Suppose that λ1, . . . λn−1 are already known, with the eigenfunctions v1, . . . , vn−1,
respectively. Then

λn = min

{
‖∇w‖2

‖w‖2
| w 6≡ 0, w = 0 on ∂D,w ∈ C2, 0 = (w, v1) = (w, v2) = · · · = (w, vn−1)

}
,

assuming that the minimum exists. Furthermore, the minimizing function is the nth eigenfunction
vn.
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Proof. Let u denote the minimizing function, which we assume exists. Note that u = 0 on ∂D
and u is orthogonal to the previous eigenfunctions. Let m be the minimum value. Let w = u+ εv
where v satisfies the constraints in the minimizing problem. By the same reasoning as above,∫∫∫

D

(∆u+mu)vdV = 0

and ∫∫∫
D

(∆u+mu)vjdV =

∫∫∫
D

u(∆vj +mvj)dV

= (m− λj)
∫∫∫

D

uvjdV = 0,

since u is orthogonal to vj. We also used the fact that u and vj are vanishing on the boundary.
Let h be an arbitrary trial function, which is C2, h = 0 on ∂D, and h 6≡ 0. By Gram-Schmidt
process, we let

v(x) = h(x)−
n−1∑
k=1

(h, vk)

(vk, vk)
vk(x).

This v is not orthogonal to all the vk. Since each function satisfies the constraint conditions, v
also satisfies as well. Hence ∫∫∫

D

(∆u+mu)hdV = 0.

since h = v + ckvk, where ck are the coefficients in the Gram-Schmidt decomposition. Since this
holds for any test function, we get that

∆u+mu = 0.

It remains to show that m = λn. Suppose m < λn−1, then it is attained by some u. However,

by induction, λn−1 =
‖∇vn−1‖2

‖vn−1‖2
which was the minimizer of the Rayleigh quotient with less

constraints, hence u would be smaller, which is a contradiction. So we know λn−1 ≤ m. By the
same reason as the n = 1 case, we can show that m ≤ λn. Since u must be linearly independent
to vn−1, we have that m = λn, note that its value can be equal to λn−1. �

We can then prove that the first eigenvalue is simple (multiplicity one) so that in fact, our
eigenvalues can be ordered as

0 < λ1 < λ2 ≤ λ3 ≤ · · ·
First we prove a maximum principle in this setting.

Lemma 4.1. The first eigenfunction can be chosen to be nonnegative, u ≥ 0.

Proof. Let u+ and u− be the nonnegative and negative parts of u. By the minimal characterization,
we know that

λ1 = min{‖∇u+‖
2

‖u+‖2
,
‖∇u−‖2

‖u−‖2
} ≤ ‖∇u‖

2

‖u‖2
= λ1

This would give a contradiction unless one of u+ or u− is zero. We choose u− = 0. �

Next we use a maximum principle to show that

Lemma 4.2. The first eigenfunction is positive, i.e. u > 0, in the interior of D.
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4.1. Minimax principle. We start with an approximation scheme where we let w1, . . . , wn be
n arbitrary test functions (C2 functions that vanish on ∂D.) Define the matrix A = (aij) and
B = (bij), with entries given by

aij = (∇wi,∇wj) =

∫∫∫
D

∇wi · ∇wjdV

bij = (wi, wj) =

∫∫∫
D

wiwjdV.

Consider the characteristic equation

det(A− λB) = 0.

Note that it is a polynomial equation in λ. Denote the roots by

λ∗1 ≤ · · · ≤ λ∗n.

First we show that

λ∗n = max
c6=0

Ac · c
Bc · c

.

Lemma 4.3. For A a real n×n symmetric matrix, the largest root λn of det(A−λI) = 0 is given
by

λn = max
c 6=0

Ac · c
c · c

.

Proof. From linear algebra, a n×n real symmetric matrix has an orthonormal eigenbasis consisting
of eigenvectors {vi}. Then, for any v ∈ Rn, we can write as v = c1v1 + · · ·+ cnvn. We have

Av · v
v · v

=
A(c1v1 + · · ·+ cnvn) · v

v · v

=
c21λ1‖v1‖2 + · · ·+ c2nλn‖vn‖2

‖v‖2

≤ λn
‖v‖2

‖v‖2
= λn.

The maximum is attained when v = vn. �

Now for B positive definite and symmetric, we can decompose as B = b2, with b positive definite
and symmetric and so B−1 = b−1b−1. Note that

det(A− λB) = det(b−1Ab−1 − λ) det(B) = 0

hence we apply the lemma to b−1Ab−1 − λI, hence

λ∗n = max
c 6=0

b−1Ab−1c · c
c · c

.

Let c = bv, then

λ∗n = max
v 6=0

Av · v
Bv · v

.
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Returning to the minimax principle, we see that the matrix B defined above is positive definite
since

xTBx =
n∑

i,j=1

(xiwi, xjwj) =

∫ ∑
i

(xiwi)
∑
j

(xjwj) =

∫
(
∑
i

xiwi)
2 > 0.

so that

λ∗n = max
c 6=0

‖∇(
∑
cjwj)‖2

‖
∑
ciwi‖2

This leads to the minimax principle

Theorem 4.3. If w1, . . . , wn is an arbitrary set of test functions and λ∗n is defined as above, then
the nth eigenvalue is given by

λn = minλ∗n

where the minimum is taken over all possible choices of n test functions w1, . . . , wn.

Proof. Fix any choice of n test functions w1, . . . , wn. We can then choose constants c1, . . . cn not
all zero so that for eigenfunctions v1, . . . vn−1 and w :=

∑
cjwj,

(w, vk) =
n∑
j=1

cj(wj, vk) = 0.

so that w is orthogonal to the first n− 1 eigenfunctions. Then

λn ≤
‖∇w‖2

‖w‖2
≤ λ∗n.

Since this holds for any choice of n test functions, we can take the minimum on both sides.
For the opposite inequality, we simply let wi = vi to obtain the minimum. �

Using the minimax principle, we can give an inequality relation about eigenvalues in different
domains:

Theorem 4.4. Let D1 ⊂ D2. Then λn(D1) ≥ λn(D2), where λn(D) is the nth eigenvalue of the
Dirichlet problem on D.

Proof. Let w1, . . . , wn be test functions and ci be coefficients such that for w =
∑
cjwj,

λ∗n(D1) =
‖∇w‖2

‖w‖2
,

that is, the Rayleigh quotient is maximized among the fixed test functions. Since D1 ⊂ D2, we
can extend these test functions to be test functions on D2 so that

λ∗n(D1) = λ∗n(D2)

Taking the minimum over test functions of D1, we have

λn(D1) = min
test functions of D1

λ∗n(D1) = min
test functions of D1

λ∗n(D2) ≥ min
test functions of D2

λ∗n(D2) = λn(D2).

�
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Now we prove that the eigenvalues increase:

Corollary 4.1. For D ⊂ Rn, the eigenvalues of the Dirichlet problem,{
−∆u = λu on D

u = 0 on ∂D.

form an infinite sequence λn such that λn →∞ as n→∞.

Appendix A. Some Linear Algebra

Theorem A.1. If A is an n × n real symmetric matrix, then it is diagonalizable under an or-
thonormal basis of eigenvectors.

Corollary A.1. If A is positive definite and symmetric, then it can be decomposed into its “square
root” matrices A = a2 where a is positive definite and symmetric.

Proof. Since A is positive definite and symmetric, we can write as

A = PDP T = (PD1/2P T )(PD1/2P T ) = a2

where P is a matrix of (normalized) eigenvectors, hence P TP = I, D is a diagonal matrix of
eigenvalues and D1/2 is the square root of the entries, which is possible since A is positive definite
hence each eigenvalue is positive. �
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