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1. Curves in R2 and R3

1.1. Curves. We begin with two notions of a curve, a level curve and a parametrized curve and
discuss their relationship.
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Definition 1.1. Let f : D ⊂ R2 → R. A level curve in R2 is a set of points

C = {(x, y) ∈ R2 | f(x, y) = c}
Example 1.1. The unit circle

x2 + y2 = 1

can be described as a level curve by being the zero set of f(x, y) = x2 + y2 − 1.

Level curves in higher dimension such as R3 require more defining equations.

Example 1.2. The x-axis in R3 is described as a level curve by

C = {(x, y, z) ∈ R3 | y = 0, z = 0}
Another way to describe a curve is to view it as the path a moving point takes.

Definition 1.2. A parametrized curve in Rn is a map γ : (a, b)→ Rn, for some a, b with −∞ ≤ a <
b ≤ ∞. Written out explicitly, it would take the form

γ(t) = (x1(t), x2(t), . . . , xn(t)).

Example 1.3 (parabola). The parabola y = x2 can be described as a level curve by

{(x, y) ∈ R2 | y − x2 = 0}.
It can be described as a parametrized curve by

γ(t) = (t, t2).

This can be obtained by setting x(t) = t, then y = x2 = t2. Another possible parametrization is

γ(t) = (t3, t6).

The above two parametrizations are defined for any subinterval of (−∞,∞). Now consider the parametriza-
tion by setting y(t) = t. Then we would obtain

γ(t) = (
√
t, t),

however, this parametrization is defined only for subintervals of [0,∞). In particular, this could only give
us the positive x half of the parabola.

Example 1.4 (circle). Now we will parametrize the unit circle x2 + y2 = 1. If we let x(t) = t, then

y(t) =
√

1− t2. However, this parametrization would only give us the positive y half of the circle. To
obtain the whole circle, we must consider examine the equation

x2(t) + y2(t) = 1.

By the Pythagorean theorem, we know that sin(t)2 + cos2(t) = 1 for any t, hence

γ(t) = (cos(t), sin(t))

for t ∈ (−∞,∞) (actually any interval of length larger than 2π) will parametrize the whole circle.

Example 1.5. Now we find a parametrization of y2−x2 = 1. This is a unit hyperbola and by setting one
of the coordinates as t would lead to a similar issue as above. We will use the relationship of hyperbolic
functions, namely cosh2(t)− sinh2(t) = 1 so that

γ(t) = (sinh(t), cosh(t)), t ∈ R.
If one prefers, we can also use the identity sec2(t) − tan2(t) = 1, however the interval of definition will
require some care as t = π

2 is not defined.

Next we describe how to go from a parametrized curve to a level curve.

Example 1.6 (astroid). Take the parametrized curve

γ(t) = (x(t), y(t)) = (cos3 t, sin3 t), t ∈ R
Using the relation cos2 t+ sin2 t = 1, we see that the coordinates of γ(t) will satisfy

x
2
3 + y

2
3 = 1.
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We now want to employ the methods of calculus to study these curves, hence we require the curves
to be differentiable. For parameterized curves, this simply means that the coordinate functions xi(t) are
differentiable. From now on all parameterized curves (unless otherwises stated) are assumed
to be smooth (infinitely differentiable).

Definition 1.3. If γ is a parametrized curve, its first derivative γ̇(t) is called the tangent vector of γ
at the point γ(t). We use the dot notation for the derivative.

Proposition 1.1. If the tangent vector of a parametrized curve is constant, the image of the curve is
(part of) a straight line.

Proof. If γ̇(t) = a for all t, where a is a constant vector, we have

γ(t) =

∫
dγ

dt
dt = ta + b

for some constant vector b. �

Example 1.7. The limaçon is the parametrized by

γ(t) = ((1 + 2 cos t) cos t, (1 + 2 cos t) sin t), t ∈ R.

Note that γ has a self-intersection at the origin. We can see this in the parametrization since γ(t) = (0, 0)
when t = 2π

3 and t = 4π
3 . Now the tangent vector at the “two points” is

γ̇(2π3 ) = (
√
3
2 ,−

3
2), γ̇(4π3 ) = (−

√
3
2 ,−

3
2).

1.2. Arc-length. By the Pythagorean theorem, we know the length of a vector v = (v1, . . . , vn) is given
by

‖v‖ =
√

(v1)2 + ·+ (vn)2

To compute the length of a parametrized curve γ(t) from t0 to r, we will approximate the curve by

straight lines. First partition the interval [t0, t] in to n pieces, i.e. let tk = t0 + k(t−t0)
n . Then take the

length of the straight line between γ(tk) and γ(tk+1), sum the pieces up and letting n→∞, we have

lim
n→∞

n−1∑
k=0

‖γ(tk+1)− γ(tk)‖
tk+1 − tk

(t− t0)
n

=

∫ t

t0

‖γ̇(s)‖ds.

The term on the right is the arc-length of γ from t0 to t.

Example 1.8 (Circumference). For fixed R > 0, consider the parametrized curve (R cos t, R sin t) for
t ∈ [0, 2π]. This is a circle with radius R. We use the arc-length formula above and get∫ 2π

0
‖γ̇(s)‖ds = R

∫ 2π

0
ds = 2πR

which is the familiar formula for the circumference.

If we consider the arc-length as a function of t, i.e.

s(t) =

∫ t

t0

‖γ̇(s)‖ds,

then we can differentiate with respect to t to obtain

ds

dt
=

d

dt

∫ t

t0

‖γ̇(s)‖ds = ‖γ̇(t)‖.
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Definition 1.4. If γ : (a, b) → Rn is a parametrized curve, its speed at the point γ(t) is ‖γ̇‖, and γ is
said to be a unit-speed curve if γ̇(t) is a unit vector for all t ∈ (a, b).

Proposition 1.2. Let n(t) be a unit vector that is a smooth function of t. Then ṅ(t) is zero or
perpendicular to ṅ(t) for all t. For unit-speed curves γ, this means that γ̇ is zero or perpendicular
to γ̇.

Proof. By direct computation,

0 =
d

dt
(n · n) = 2ṅ · n.

�

1.3. Reparametrization.

Definition 1.5. A parametrized curve γ̃ : (ã, b̃)→ Rn is a reparametrization of a parametrized curve

γ : (a, b) → Rn if there is a smooth bijective map φ : (ã, b̃) → (a, b) such that the inverse φ−1 is smooth
and

γ̃(s) = γ(φ(s)) for all s ∈ (ã, b̃).

Intuitively, we are only changing how a point is moving along the same curve.

Example 1.9. Consider the parametrized curve γ(t) = (cos t, sin t). Another parametrization could be
given by γ̃(t) = (sin t, cos t). To see that this is a reparametrization, we need to find a reparametrization
map φ. One possible φ is φ(t) = π

2 − t, then γ̃(t) = γ(φ(t)).

One useful reparametrization is to change a given curve to a unit-speed curve (a unit-speed reparametriza-
tion). We now investigate when this is possible.

Definition 1.6. A point γ(t) of a parametrized curve is called a regular point if γ̇(t) 6= 0; otherwise
γ(t) is a singular point. A curve is regular if all of its points are regular.

Proposition 1.3. Any reparametrization of a regular curve is regular

Proof. Suppose γ and γ̃ are reparametrization of the same curve, related by γ̃t = γ(φ(s)). Let ψ = φ−1

be the inverse map. Since φ(ψ(t)) = t, taking the derivative we have

dφ

ds

dψ

dt
= 1.

From this we can see that dφ
ds 6= 0. Now γ̃(t̃) = γ(φ(s)) so

dγ̃

ds
=
dγ

dt

dφ

dt̃
.

So dγ̃
ds 6= 0, if dγ

dt 6= 0. �

Proposition 1.4. If γ(t) is a regular curve, its arc-length s(t), starting at any point of γ, is a smooth
function of t.

Proof. We know that
ds

dt
= ‖γ̇(t)‖

regardless of γ being regular or not. By regularity, γ̇(t) 6= 0 so in fact, it is smooth. �

Proposition 1.5. A parametrized curve has a unit-speed reparametrization if and only if it is regular.

Proof. Suppose γ : (a, b)→ Rn has a unit-speed reparametrization γ̃(s). Then

1 =

∥∥∥∥dγ̃ds
∥∥∥∥ =

∥∥∥∥dγdt
∥∥∥∥ dtds

and so dγ
dt 6= 0.
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Conversely, suppose that γ is regular. Then ds
dt = ‖γ̇‖ > 0. Since s is a smooth function of t with

positive derivative, by the inverse function theorem, the inverse s−1 exists, smooth and maps intervals to
intervals. Let φ = s−1 be the reparametrization map, so γ̃(s) = γ(t) and

dγ̃

ds

ds

dt
=
dγ

dt

and so ∥∥∥∥dγ̃ds
∥∥∥∥ dsdt =

∥∥∥∥dγdt
∥∥∥∥ =

ds

dt

hence γ̃ is unit speed. �

1.4. Closed curves.

Definition 1.7. Let γ : R→ Rn be a smooth curve and let T ∈ R. We say that γ is T -periodic if

γ(t+ T ) = γ(t) for allt ∈ R.

If γ is not constant and is T -periodic for some T 6= 0, then γ is said to be closed.

Definition 1.8. The period of a closed curve γ is the smallest positive number T such that γ is T -
periodic.

Example 1.10. The circle γ(t) = (cos(t), sin(t)) is 2π-periodic.

Proposition 1.6. If γ is a regular closed curve, a unit-speed reparametrization of γ is always closed.

Proof. Suppose γ has period T . Since the period is T , it is reasonable to define the “length” to be

L(γ) :=

∫ T

0
‖γ̇(t)‖dt.

A unit-speed reparametrizationd γ̃ is given by the arc-length

s =

∫ t

0
‖γ̇(r)‖dr

so that γ̃(s) = γ(t). Note that

s(t+ T ) =

∫ t+T

0
‖γ̇‖

=

∫ T

0
‖γ̇‖+

∫ t+T

T
‖γ̇‖

= L(γ) + s(t).

Hence

γ̃(s) = γ̃)(s+ L)

so that γ̃ is a closed curve. So we can always assume that a closed curve is unit-speed and that its period
is equal to its length. �

Definition 1.9. A curve γ is said to have a self-intersection at a point p of the curve if there exist
parameter values a 6= b such that

(1) γ(a) = γ(b) = p, and
(2) if γ is closed with period T , then a− b is not an integer multiple of T .
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1.5. Level curves vs. parametrized curves.

Theorem 1.1. Let f(x, y) be a smooth function of two variables. Assume that, at every point of the
level curve

C = {(x, y) ∈ R2 | f(x, y) = 0}
∇f 6= (0, 0). If p = (x0, y0) is a point of C, there is a regular parametrized curve γ(t) defined on an open
interval containing 0 such that γ passes through p when t = 0 and γ(t) is contained in C for all t.

Theorem 1.2. Let γ be a regular parametrized plane curve, and let γ(t0) = (x0, y0). Then there is a
smooth real-valued function f(x, y) defined on open intervals containing x0 and y0 s.t. ∇f 6= (0, 0) and
γ(t) is contained in the level curve f(x, y) = 0 for all values of t in some open interval containing t0.

2. Curvature

2.1. Curvature. To find a measure of how “curved” a curve is. Suppose that γ is a unit-speed curve in
R2. As the parameter t of γ changes to t+ ∆t, the curve moves away from its tangent line at γ(t) be a
distance (γ(t + ∆t) − γ(t)) · n where n is a unit vector perpendicular to the tangent vector γ̇(t) at γ(t)
(Recall v · w = |v||w| cos θ). By Taylor expansion:

γ(t+ ∆t) = γ(t) + γ̇(t)∆t+
1

2
γ̈(t)(∆t)2 +O((∆t)3)

Since γ̇ · n = 0, an approximation when ∆t is small for the deviation of the curve from the tangent line
is given by

1

2
γ̈(t) · n(∆t)2.

This motivates the following definition

Definition 2.1. If γ is a unit-speed curve with parameter t, its curvature κ(t) at the point γ(t) is
defined to be ‖γ̈(t)‖.

Example 2.1. Consider the circle with radius R. It can be given by γ(t) = (R cos t, R sin t). To give it
a unit speed parametrization, we know that its arc-length is given by s(t) = Rt so

γ̃(s) = (R cos(s/R), R sin(s/R))

is unit speed. Computing, we have

γ̈(s) = (− 1
R cos( sR),− 1

R sin( sR)).

Therefore, the curvature is given by

κ(s) = ‖γ̈(s)‖ =
1

R

We have a formula for regular curves (not necessarily unit-speed)

Proposition 2.1. Let γ(t) be a regular curve in R3. Then its curvature is given by

κ =
‖γ̈ × γ̇‖
‖γ̇‖3

Proof. Let s be a unit-speed parameter of γ(t). Then

γ̇ =
dγ

dt
=
dγ

ds

ds

dt
,

Therefore

κ =

∥∥∥∥d2γds2
∥∥∥∥ =

∥∥∥∥ dds
(
γ̇

ṡ

)∥∥∥∥ =

∥∥∥∥∥∥
d
dt

(
γ̇
ṡ

)
ṡ

∥∥∥∥∥∥ =

∥∥∥∥ γ̈ṡ− s̈γ̇(ṡ)3

∥∥∥∥ =

∥∥∥∥ γ̈(ṡ)2 − ṡs̈γ̇
(ṡ)4

∥∥∥∥
Now

(ṡ)2 = γ̇ · γ̇
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and taking the derivative we obtain
ṡs̈ = γ̇ · γ̈.

Inserting these into the curvature equation

κ =
‖γ̈(γ̇ · γ̇)− (γ̇ · γ̈)γ̇‖

‖γ̇‖2

Using the triple product identity a× (b× c) = b(a · c)− c(a · b) the numerator becomes

γ̈(γ̇ · γ̇)− (γ̇ · γ̈)γ̇ = γ̇ × (γ̈ × γ̇)

Taking the norm and the fact that γ̇ and γ̇ × γ̈ are perpendicular,

‖γ̇ × (γ̈ × γ̇)‖ = ‖γ̇‖‖γ̈ × γ̇‖.
�

2.2. Plane Curves. In R2, we can refine the definition of curvature into “signed curvature”. Suppose
that γ(s) is a unit-speed curve in R2. Its unit tangent vector is given by

t = γ̇.

In the plane, there are two possible choices for a unit vector perpendicular to t. We define ns the signed
unit normal of γ to be the unit vector obtained by rotating t counterclockwise by π

2 . Since γ̈ is also
perpendicular to t, there must be a scalar κs such that

γ̈ = κsns;

κs is called the signed curvature of γ. If γ is a regular curve, we define the above quantities through its
unit-speed parametrization. For unit tangent vectors, the direction of the tangent vector γ̇(s) is measured
by the angle ϕ(s) such that

γ̇(s) = (cos(ϕ(s)), sin(ϕ(s)))

While the choice of the angle function ϕ(s) is not unique, we can always find a smooth angle function.

Proposition 2.2. Let γ : (a, b)→ R2 be a unit-speed curve, let s0 ∈ (a, b) and let ϕ0 be such that

γ̇(s0) = (cosϕ0, sinϕ0).

Then there is a unique smooth function ϕ : (a, b)→ R such that ϕ(s0) = ϕ0 and γ̇(s) = (cos(ϕ(s)), sin(ϕ(s))).

Proof. Let
γ̇(s) = (f(s), g(s))

and since γ̇ is a unit vector, f2 + g2 = 1. Define

ϕ(s) = ϕ0 +

∫ s

s0

(fġ − gḟ)dt.

This is a good candidate for the angle function since the integral term is actually
g

f

∣∣∣∣
s

− g

f

∣∣∣∣
s0

, which is

the difference in the “slope” of the tangent vector. Since we are assuming γ is smooth, all the factors
involved in ϕ are smooth hence ϕ is smooth. Let

F = f cosϕ+ g sinϕ, G = f sinϕ− g cosϕ.

then
Ḟ = (ḟ + gϕ̇) cosϕ+ (ġ − fϕ̇) sinϕ.

Now the first term
ḟ + gϕ̇ = ḟ(1− g2) + fgġ = f(fḟ + gġ) = 0

and similarly ġ−fϕ̇ = 0. Hence F is constant and similarly G is constant. Plugging in initial conditions,
F (s0) = 1 and G(s0) = 0. Hence

f cosϕ+ g sinϕ = 1, f sinϕ− g cosϕ = 0

which implies f = cosϕ and g = sinϕ.
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To show uniqueness, assume that there is another smooth function ψ such that ψ(s0) = ϕ0 and
γ̇(s) = (cosψ(s), sinψ(s)) for s ∈ (a, b). Then ϕ(s)− ψ(s) = 2πn(s) where n : (a, b)→ Z. Since ψ and ϕ
are smooth, n(s) is smooth hence must be a constant. Since n(0) = 0, ϕ = ψ. �

Definition 2.2. The smooth function ϕ in the above is called the turning angle of γ determined by
the condition ϕ(s0) = ϕ0.

The signed curvature can be interpreted as

Proposition 2.3. Let γ(s) be a unit-speed plane curve, and let ϕ(s) be a turning angle for γ. Then

κs =
dϕ

ds
.

Thus the signed curvature is the rate at which the tangent vector of the curve rotates.

Proof. The unit tangent vector is given by t = (cosϕ, sinϕ), so

ṫ = ϕ̇(− sinϕ, cosϕ) = κsns

Since ns = (− sinϕ, cosϕ), we get our result. �

Definition 2.3. The total signed curvature of a unit-speed closed curve γ of length l is∫ l

0
κs(s)ds

Here we encounter our first “Gauss-Bonnet” type result

Corollary 2.1. The total signed curvature of a closed plane curve is an integer multiple of 2π.

Proof. Let γ be a unit-speed closed plane curve and let l be its length. The total signed curvature of γ is∫ l

0
κs(s)ds =

∫ l

0

dϕ

ds
ds = ϕ(l)− ϕ(0),

where ϕ is a turning angle for γ. Now γ is unit-speed and closed hence l-periodic, hence γ̇(l) = γ̇(0),
that is

(cosϕ(l), sinϕ(l)) = (cosϕ(0), sinϕ(0))

therefore ϕ(l)− ϕ(0) = 2πn. �

For plane curves, its signed curvature determines the curve up to isometry.

Theorem 2.1. Let k : (a, b)→ R be any smooth function. Then, there is a unit-speed curve γ : (a, b)→
R2 whose signed curvature is k. Furthermore, if γ̃ : (a, b) → R2 is any other unit-speed curve whose
signed curvature is k, there is a direct isometry of M of R2 such that

γ̃(s) = M(γ(s)), for all s ∈ (a, b)

Proof. For the first part, fix s0 ∈ (a, b) and define for any s ∈ (a, b),

ϕ(s) =

∫ s

s0

k(u)du

and

γ(s) =

(∫ s

s0

cosϕ(t)dt,

∫ s

s0

sinϕ(t)dt

)
.

Then the tangent vector of γ is
γ̇(s) = (cosϕ(s), sinϕ(s)),

and by Proposition 2.3, its signed curvature is

dϕ

ds
=

d

ds

∫ s

s0

k(u)du = k(s).

Now let ϕ̃ be a smooth turning angle for γ̃. Then

˙̃γ(s) = (cos ϕ̃(s), sin ϕ̃(s)),
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therefore

γ̃(s) =

(∫ s

s0

cos ϕ̃(t)dt,

∫ s

s0

sin ϕ̃(t)dt

)
+ γ̃(s0).

Furthermore, γ̃ has signed curvature k(s) = dϕ̃
ds so

ϕ̃(s) =

∫ s

s0

k(u)du+ ϕ̃(s0).

Let T : R2 → R2 be translation by γ̃(s0), and let θ = ϕ̃(s0). Then

γ̃(s) = T

(∫ s

s0

cos(ϕ(t) + θ)dt,

∫ s

s0

sin(ϕ(t) + θ)dt

)
= T

(
cos θ − sin θ
sin θ cos θ

)
(γ(s))T

�

Proposition 2.4. The signed curvature κs of a regular plane curve is a smooth function of s.

Proof. Since regular curves always have a unit-speed parametrization, let γ be a unit-speed curve. By
Proposition 2.2, there is a unique smooth turning angle ϕ. By Proposition 2.3, κs = dϕ

ds . Hence κs is
smooth. �

Example 2.2. Any regular plane curve γ whose curvature is a positive constant is part of a circle. Let
κ be the curvature of γ and let κs be its signed curvature. Then κs = ±κ. Since κs is continuous, it must
be constant in this case. From Theorem 2.1, if we can find a parametrized circle whose signed curvature
is κs, then every curve of constant curvature must come from some isometry of this circle.

A unit-speed parametrized circle of radius R centered at the origin is given by

γ(s) =
(
R cos

( s
R

)
, R sin

( s
R

))
.

Its tangent vector is

t = γ̇ =
(
− sin

( s
R

)
, cos

( s
R

))
=
(

cos
( s
R

+
π

2

)
, sin

( s
R

+
π

2

))
.

So the turning angle is ϕ =
s

R
+
π

2
hence κs =

dϕ

ds
=

1

R
. If κs > 0, let R = κ−1s . If we parametrize the

circle so that it turns clockwise, i.e.,

γ̃(s) =

(
R cos

(
2

R

)
,−R sin

( s
R

))
,

then its signed curvature is − 1
R , which gives the case for κs < 0.

In summary knowing the signed curvature essentially tells us what the curve is in R2.

2.3. Space curves. Now we consider curves in R3. These will be called space curves. In 3 dimensions,
curvature is no longer sufficient. Let γ(s) be a unit-speed curve in R3, and let t = γ̇ be its unit tangent
vector.

Definition 2.4. If curvature κ(s) 6= 0, define the principal normal of γ at the point γ(s) to be the
vector

n(s) =
1

κ(s)
ṫ(s).

Define the binormal vector of γ at the point γ(s) to be

b(s) = t(s)× n(s)
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It is clear that {t,n,b} forms a orthonormal basis and since b is a unit vector, it is perpendicular to

ḃ. Furthermore,

ḃ =
d

ds
(t× n) = t× ṅ.

So ḃ is perpendicular to both t and b hence is parallel to n hence

ḃ = −τn
for some scalar τ , which we call torsion of γ. The torsion of a regular curve is simply the torsion of its
unit-speed parametrization.

Proposition 2.5. Let γ(t) be a regular curve in R3 with nowhere-vanishing curvature. Then

τ =
(γ̇ × γ̈) ·

...
γ

‖γ̇ × γ̈‖2

Proof. Direct computation. �

Proposition 2.6. Let γ be a regular curve in R3 with nowhere vanishing curvature. Then, the image of
γ is contained in a plane if and only if τ is zero at every point of the curve.

Proof. We can assume γ is unit-speed. First assume that γ is contained in a plane, say v ·N = d for some
constant unit normal vector N . Recall that this characterizes the plane, if we fix some coordinates then
N = (a, b, c) and v = (x, y, z) so N · v = ax+ by + cz = d. Then we have t ·N = 0 and ṫ ·N = 0. Using
the fact that ṫ = κn, we can conclude that n · N = 0 if κ 6= 0. So t and n are both perpendicular to
N hence b = t× n is parallel to N . Since we assumed N is a unit vector, by continuity of the function
b(s), we must have either b = N or b = −N and in both cases ḃ = 0.

Conversely, suppose that τ = 0 everywhere, hence ḃ = 0. So b is a constant vector. Then

d

ds
(γ · b) = t · b = 0

so γ · b = d for some constant d. �

We computed ṫ and ḃ. Now we compute ṅ:

ṅ = −τn× t + κb× n = −κt + τb

hence we obtain the Frenet-Serret equations: ṫ
ṅ

ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

t
n
b


Proposition 2.7. Let γ be a unit-speed curve in R3 with constant curvature and zero torsion. Then γ
is a parametrization of (part of) a circle.

Proof. Since τ = 0, b is a constant vector and γ is contained in a plane P perpendicular to b. Now

d

ds

(
γ +

1

κ
n

)
= 0

so γ + 1
κn is a constant vector, say a. Then

‖γ − a‖ =
1

κ

So γ lies on the sphere with center a and radius 1
κ . The intersection of the plane and the sphere is a

circle. �

Proposition 2.8. Let P be an 3× 3 orthogonal matrix and let a ∈ R3 so that M(v) = Pv+a is a direct
isometry of R3. If γ is unit-speed in R3, the curve Γ = M(γ) is also unit-speed. Furthermore, if t,n,b
and T,N,B are the tangent, principal normal, and binormal for γ and Γ, respectively, then T = P t,
N = Pn and B = Pb.
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Proof. We have

‖Γ̇‖2 = ‖P γ̇‖2 = γ̇TP TP γ̇ = γ̇T γ̇ = ‖γ‖2 = 1.

Also, since P is an isometry, ‖Γ̈‖ = ‖γ̈‖ = κ. T = P t and N = Pn are straightforward. The binormal
vectors can be deduced from

(At)× (An) = det(A)(AT )−1(t× n)

where we use A = P ∈ SO(3) so that det(P ) = 1 and P−1 = P T . �

Remark A direct isometry is an isometry of the form F (v) = Pv + a where P ∈ SO(n).

Theorem 2.2. Let γ(s) and γ̃(s) be two unit-speed curves in R3 with the same curvature κ(s) > 0 and
the same torsion τ(s) for all s. Then, there is a direct isometry M of R3 such that

γ̃(s) = M(γ(s)).

Furthermore, if k and t are smooth functions with k > 0 everywhere, there is a unit-speed curve in R3

whose curvature is k and whose torsion is t.

Proof. Let t,n, and b be the tangent, principal normal, and binormal of γ and t̃, ñ, and b̃ be those
for γ̃. Let s0 be fixed and θ the angle between them. Let ρ be the rotation that takes t(s0) to t̃(s0),
i.e. ρ(t(s0)) = t̃(s0). Let ρ′ be the rotation fixing t̃(s0) and ρ′(ρ(n(s0))) = ñ(s0). By orthonormality,

ρ′ρ(b(s0)) = b̃(s0). Let T be the translation action by γ̃(s0)−γ(s0). Then M := Tρ′ρ is a direct isometry
and by Proposition 2.8, Γ = M(γ) is a unit speed curve, with T(s),N(s), and B(s) the tangent, principal

normal, and binormal along Γ(s). By construction, T(s0) = t̃(s0), N(s0) = ñ(s0), and B(s0) = b̃(s0).
We want to show that they are in fact the same for all s. We consider the following

A(s) = t̃(s) ·T(s) + ñ(s) ·N(s) + b̃(s) ·B(s).

We have A(s0) = 3 and since all the vectors involved are unit vectors, A(s) = 3 if and only if t̃ = T,

ñ = N, and b̃ = B. Thus we want to show that A is a constant. By direct computation ·A = 0, where
we use the fact that both curves satisfy the Frenet-Serret equations with the same curvature and torsion.
Hence we proved the first part.

For the second part, the Frenet-Serret equation has a unique solution give an initial condition T(s0) =
e1, N(s0) = e2 and B(s0) = e3, and in fact they stay orthonormal for all values of s. Now define

γ(s) =

∫ s

s0

T(u)du.

Then γ̇ = T and Ṫ = kN. Further more, B = λT ×N for some λ = ±1. By continuity, λ = 1 so B is
the binormal, hence t is the torsion. �

3. Global properties of curves

3.1. Simple closed curves.

Definition 3.1. A simple closed curve in R2 is a closed curve in R2 that has no self-intersection

A simple closed curve splits R2 into two connected regions, its interior and exterior. A simple closed
curve is positively oriented if the signed unit normal points towards the interior and negatively
oriented if not.

3.2. The isoperimetric inequality. The isoperimetric inequality is the following

Theorem 3.1. Let γ be a simple closed curve with length l(γ) and area of the interior A(γ). Then

A(γ) ≤ l(γ)2

4π
with equality if and only if γ parametrizes a circle.

In preparation to prove this, we need to use the following formula for the area of the interior of a
simple closed curve.
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Proposition 3.1. If γ(t) = (x(t), y(t)) is a positively-oriented simple closed curve in R2 with period T ,
then

A(γ) =
1

2

∫ T

0
(xẏ − yẋ)dt.

The proof can be found in multi-variable calculus textbooks, for instance the section on Green’s theorem
of Stewart Calculus.

Another identity we will use is called the (weak) Wirtinger’s Inequality

Proposition 3.2. Let F : [0, π]→ R be a smooth function such that F (0) = F (π) = 0. Then,∫ π

0

(
dF

dt

)2

dt ≥
∫ π

0
F (t)2dt.

and equality holds if and only if F (t) = a sin t for all t ∈ [0, π], where a is a constant.

Proof. First note that ∫ π

0
(F ′ − F cot(t))2dt ≥ 0.

Expanding this we get

0 ≤
∫ π

0
(F ′)2dt−

∫ π

0
2FF ′ cot(t)dt+

∫ π

0
F 2 cot2(t)dt.

Since (F 2)′ = 2FF ′, integrating the second term by parts we obtain

−
∫ π

0
2FF ′ cot(t)dt = −(F 2 cot(t))

∣∣∣∣π
0

−
∫ π

0
F 2 csc2(t)dt.

The boundary terms will vanish by taking the limit or considering their Taylor expansions. Using the
fact that csc2(t)− cot2(t) = 1, we obtain∫ π

0
(F ′)2dt−

∫ π

0
F 2dt ≥ 0.

Solving the ODE

F ′ = F cot(t)

yields F (t) = a sin(t). �

Now we prove the isoperimetric inequality

Proof of Theorem 3.1. Let γ be a simple closed curve with length l(γ). Let s be its arc length parameter.
For convenience, we reparametrize so that the period is π, namely

t =
πs

l(γ)
.

Furthermore, we assume that γ(0) = 0. We calculate the area and length using polar coordinates

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t),

note that the angle θ(t) is a function of our parametrization t. Then

ẋ2 + ẏ2 = ṙ2 + r2θ̇2, xẏ − yẋ = r2θ̇.

By chain rule,

ẋ2 + ẏ2 =

((
dx

ds

)2

+

(
dy

ds

)2
)(

ds

dt

)2

=
l(γ)2

π2
.

By Green’s theorem, to obtain the isoperimetric inequality, we want to show that

l(γ)2

4π
−A(γ) =

1

4

∫ π

0
(ṙ2 + r2θ̇2dt− 1

2

∫ π

0
r2θ̇dt
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is nonnegative and equality if and only if γ is a circle. Rearranging terms and multiplying by 4, we want∫ π

0
r2(θ̇ − 1)2dt+

∫ π

0
(ṙ2 − r2)dt

Is nonnegative. The first term is integrating a squared term and the second follows from Wirtinger’s
inequality. Wirtinger’s inequality is equal when r(t) = a sin(t) and the first term vanishes when θ = t+ c
for some constant. �

4. Surfaces

4.1. Introduction. Heuristically, a surface is a subset of R3 that “looks” like a piece of R2. A motivating
example is the surface of the Earth. The Earth is globally a sphere however, locally looks like a flat plane.
To be precise,

Definition 4.1. A subset S ⊂ R3 is a surface if, for every point p ∈ S, there is an open set U ⊂ R2

and an open set W ⊂ R3 containing p such that S ∩ W is homeomorphic to U . A homeomorphism
σ : U → S ∩W from the above definition is called a surface patch or parametrization of S ∩W of S.
A collection of such surface patches whose images cover the whole of S is called an atlas of S.

Example 4.1. The most basic example of a surface is a plane in R3. Let a be a point in the plane and
p and q be two non parallel vectors perpendicular to the defining normal vector of the plane. Then a
surface patch is given by

σ(u, v) = a+ up + vq.

Example 4.2. A circular cylinder is the set of points in R3 that are at a fixed distance from a fixed
straight line. A level surface description is given by

S = {(x, y, z) ∈ R3 | x2 + y2 = 1}.

A surface patch can be given by

σ(u, v) = (cos(u), sin(u), v),

however we must be careful on how we define the open set that this is defined over. Note that (0, 2π]×R
would cover the cylinder but is not open. Any ”larger” set would make σ not injective. If we let

U = (0, 2π)× R,

then we do not cover a line on the cylinder. Hence we need to consider another surface patch by considering
another open set

Ũ = (−π, π)× R.
Then an atlas is given by {σ|U , σ|Ũ}.

Example 4.3. A unit 2-sphere S2 is given as a level set by

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

One way to parametrize this is by using latitude and longitude,i.e.

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ).

with

U = {(θ, ϕ) | − π

2
< θ <

π

2
, 0 < ϕ < 2π}.

This covers most of the sphere except a semicircle on the negative x-axis. To obtain an atlas, we consider
another surface patch

σ̃(θ, ϕ) = (− cos θ cosϕ,− sin θ,− cos θ sinϕ)

with the same U .
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Example 4.4. A non-example of a surface is given by the circular cone defined by the level set

C = {(x, y, z) ∈ R3 | x2 + y2 = z2}.

We can see that this is not a surface in our definition since any surface patch containing the vertex
will not be homeomorphic to a ball. If we remove the vertex, then we have a union of surfaces, each
homeomorphic to a cylinder.

Definition 4.2. Given two surface patches, σ and σ̃, we can consider the composition Φ := σ−1 ◦ σ̃,
called transition map defined on the preimage of the intersection of the surface patches. Then we have

σ̃(ũ, ṽ) = σ(Φ(ũ, ṽ))

where defined.

4.2. Smooth Surfaces.

Definition 4.3. A surface patch σ : U → R3 is called regular if it is smooth and the vectors σu := ∂σ
∂u

and σv := ∂σ
∂v are linearly independent at all points (u, v) ∈ U . A smooth surface S is one where every

point p ∈ S, there is a regular surface patch with p ∈ σ(U)

Proposition 4.1. The transition maps of a smooth surface are smooth.

Proof. Let σ : U → R3 and σ̃ : Ũ → R3 be two (regular) surface patches. Suppose that p ∈ S lies in both
surfaces patches, i.e.

σ(u0, v0) = σ̃(ũ0, ṽ0) = p.

Written out in coordinates, we have

σ(u, v) = (f(u, v), g(u, v), h(u, v)).

Using subscripts as partial derivatives, linear independence of σu and σv implies the Jacobian J(σ)fu fv
gu gv
hu hv


is a rank 2 matrix everywhere. Without loss of generality, assume(

fu fv
gu gv

)
is full rank, i.e. invertible, at p. Consider the projection

π(x, y, z) = (x, y)

and define F := π ◦ σ, so that

F (u, v) = (f(u, v), g(u, v)).

We apply the inverse function theorem to obtain open sets W ⊂ R2 containing (u0, v0) and V ⊂ R2

containing F (u0, v0) where F : W → V is bijective with smooth inverse F−1 : V → W . Similarly define

F̃ := π ◦ σ̃. Then

F−1 ◦ F̃ = σ−1 ◦ σ̃

on W̃ = σ̃−1σ(W ). Since F−1 and F̃ are smooth, the transition map is smooth. �

The next result states how we can reparametrize surface patches.

Proposition 4.2. Let U and Ũ be open subsets of R2 and let σ : U → R3 be a regular surface patch. Let
Φ : Ũ → U be a bijective smooth map with smooth inverse map Φ−1 : U → Ũ . Then, σ̃ = σ ◦Φ : Ũ → R3

is a regular surface patch.
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Proof. First, the patch σ̃ is smooth since Φ is smooth. It remains to show that σ̃ is regular. Let
Φ(x, y) = (u(x, y), v(x, y)). Then

∂σ̃

∂x
=
∂σ

∂u

∂u

∂x
+
∂σ

∂v

∂v

∂x
and

∂σ̃

∂y
=
∂σ

∂u

∂u

∂y
+
∂σ

∂v

∂v

∂y
and by direct computation

∂σ̃

∂x
× ∂σ̃

∂y
= det(J(Φ))

∂σ

∂u
× ∂σ

∂v
.

Since Φ is smooth bijective with smooth inverse, det(J(Φ)) 6= 0 so linear independence of one implies the
other. �

In summary we assume all surfaces are smooth and all surface patches are regular unless
otherwise stated. Furthermore, we assume the surfaces are connected.

4.3. Smooth maps. What does it mean for a map between two surfaces, f : S1 → S2 to be smooth?
We have a well-defined notion of differentiability on maps between Euclidean space since we have a
natural set of coordinates. On surfaces then, it would depend on the parametrization. Let σ1 and σ2 be
surface patches for S1 and S2 respectively. Then we can compose with the map f to get a map between
Euclidean spaces,

σ−12 ◦ f ◦ σ1 : U1 ⊂ R2 → U2 ⊂ R2.

We then claim that f is smooth if the composition map is a smooth map between Euclidean spaces.
This is well-defined since the transition maps between different surface patches are smooth. A particular
class of smooth maps we will be interested on those who are bijective with smooth inverses. These will
be called diffeomorphisms and if there exists a diffeomorphism f : S1 → S2, then S1 and S2 are said
to be diffeomorphic.

Proposition 4.3. Let f : S1 → S2 be a diffeomorphism. If σ1 is a surface patch on S1, then f ◦ σ1 is a
surface patch on S2.

Proof. Immediately follows from Proposition 4.2. �

We also consider a condition slightly weaker.

Definition 4.4. A smooth map f : S1 → S2 between smooth surfaces is called a local diffeomorphism
if, for any point p ∈ S1, there is an open set U such that f(U) is open in S2 and f |U : U → f(U) is a
diffeomorphism.

Example 4.5. Consider a map between the y − z plane and the unit cylinder given by

f(0, y, z) = (cos(y), sin(y), z).

While f is not a diffeomorphism, we will show that it is a local diffeomorphism. Let π(u, v) = (0, u, v)
parametrize the y − z plane. Let {σ|U , σ|Ũ} be an atlas for the unit cylinder given earlier. If 2nπ < a <
2(n+ 1)π, then

f(π(a, z)) = σ(a− 2nπ, z)

If a is an even multiple of 2π, we use σ|Ũ .

4.4. Tangents and derivatives. In order to do calculus on the surfaces, we define the notion of a
tangent vector to a surface.

Definition 4.5. A tangent vector to a surface S at a point p ∈ S is the tangent vector at p of a curve
in S passing through p. The tangent space TpS of S at p is the set of all tangent vectors to S at p.

Proposition 4.4. Let σ : U → R3 be a patch of a surface S containing a point p ∈ S, and let (u, v) be
coordinates in U . The tangent space to S at p is the vector subspace of R3 spanned by the vectors σu
and σv.
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Proof. Let γ be a smooth curve in S. Then

γ(t) = σ(u(t), v(t)).

Then
∂γ

∂t
= σuut + σvvt

So ∂γ
∂t is a linear combination of σu and σv. Now we must show that if we have a vector in the span of σu

and σv, say λσu+µσv, then there is a curve that gives that vector as its tangent vector. That is achieved
by the curve

γ(t) = σ(u0 + λt, v0 + µt).

�

The plane defined by the tangent space will be called the tangent plane. Now we want to define a
notion of a derivative for smooth map f : S1 → S2 between smooth surfaces.

Definition 4.6. Let w ∈ TpS1, then there is a curve γ passing through p at t0 such that w = γ̇(t0). Let

γ̃ = f ◦ γ. Then there is a corresponding w̃ = ˙̃γ(t0). The derivative Dpf of f at the point p ∈ S1 is the
map Dpf : TpS1 → Tf(p)S2 such that Dpf(w) = w̃.

We need to first make sure that this is well-defined, i.e. only depends on f , p, and w. Let σ : U → R3

be a surface patch of S containing p, say σ(u0, v0), and let

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

Let w = λσu + µσv be the tangent vector at p of a curve γ(t) = σ(u(t), v(t)). Then the corresponding
curve γ̃ is given by

γ̃(t) = σ̃(α(u(t), v(t)), β(u(t), v(t))).

Then by directly computing we have

Dpf(w) = (u̇αu + v̇αv)σ̃α + (u̇βu + v̇βv)σ̃β|t0
= (λαu + µαv)σ̃α + (λβu + µβv)σ̃β|t0 .

Since u̇(t0) = λ and v̇(t0) = µ, the right hand side is independent of the curve γ. Note that we can
rewrite in matrix form as

w̃ =

(
αu αv
βu βv

)(
λ
µ

)
= Dpf(w)

using the basis {σ̃α, σ̃β} and {σu, σv}. What we have shown is that

Proposition 4.5. If f : S1 → S2 is a smooth map between surfaces and p ∈ S, the derivative Dpf :
TpS1 → Tf(p)S2 is a linear map.

Furthermore,

Proposition 4.6.

(1) If S is a surface and p ∈ S, the derivative at p of the identity map S → S is the identity map
TpS → TpS.

(2) If S1, S2, and S3 are surfaces and f1 : S1 → S2 and f2 : S2 → S3 are smooth maps, then for all
p ∈ S1,

Dp(f2 ◦ f1) = Df1(p)(f2)Dpf1.

(3) If f : S1 → S2 is a diffeomorphism, then for all p ∈ S1 the linear map Dpf : TpS1 → Tf(p)S2 is
invertible.

Proof.

(1) Suppose f is the identity map since γ(t) = f(γ(t)), w̃ = γ′(t) = Iw, hence Dpf = I.
(2) Let γ1 be a curve in S1 and let γ2 = f1(γ1). Then Dpf1(γ

′
1) = γ′2. If γ3 = f2(γ2), then

γ′3 = Df1(p)f2(γ
′
2) = Df1(p)f2Dpf1(γ

′
1).
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(3) Since f−1 ◦ f is the identity map, Dp(f
−1 ◦ f) = I. From part (2), we know that Dp(f

−1 ◦ f) =
Df(p)f

−1Dpf hence Dpf is invertible.

�

We now give a simple criterion for a smooth map to be a local diffeomorphism

Proposition 4.7. Let S and S̃ be a smooth map. Then f is a local diffeomorphism if and only if, for
all p ∈ S, the linear map Dpf : TpS → Tf(p)S̃ is invertible.

Proof. Suppose f is a local diffeomorphism, then it is a diffeomorphism from some open set U to f(U).
Then the previous proposition tells us the derivative is invertible.

Conversely, suppose Dpf is invertible. Let σ : U → R3 be a surface patch containing p and σ̃ : Ũ → R3

a surface patch containing f(p). By shrinking U if necessary, we assume f(σ(U)) ⊂ σ̃(Ũ), that is, there
are smooth functions α, beta such that

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

Then the map F (u, v) = (α(u, v), β(u, v)) has the Jacobian matrix(
αu αv
βu βv

)
which is the matrix of Dpf under a suitable basis, hence invertible. Now we apply the inverse function

theorem to F to find open sets V ⊂ U and Ṽ ⊂ Ũ such that F : V → Ṽ is a diffeomorphism. Then f is
a diffeomorphism between σ(V ) and σ̃(Ṽ ), hence f is a local diffeomorphism. �

4.5. Normals and orientability. Given a surface patch σ : U → R3, define the standard unit normal
by

Nσ =
σu × σv
‖σu × σv‖

This is not independent of the surface patch, if σ̃ is another surface patch, then

Nσ = ±N±σ̃
Definition 4.7. A surface S is orientable if there exists an atlas A for S with property that, if Φ is the
transition map between any two surface patches in A, then det(D(Φ)) > 0 where Φ is defined.

Definition 4.8. An oriented surface is a surface S together with a smooth choice of unit normal N
at each point, i.e. a smooth map N : S → R3 such that for all p ∈ S, N(p) is a unit vector perpendicular
to TpS. It can be shown that oriented surfaces are orientable.

Example 4.6 (Möbius Strip). While we will mostly deal with oriented surfaces, here is an example of a
non-orientable surface. It is defined by the surface patch

σ(t, θ) =

((
1− t sin

θ

2

)
cos θ,

(
1− t sin

θ

2

)
sin θ, t cos

θ

2

)
,

with the domain of definition to be

U = {(t, θ) ∈ R2 | − 1

2
< t <

1

2
, 0 < θ < 2π}.

and

Ũ = {(t, θ) ∈ R2 | − 1

2
< t <

1

2
,−π < θ < π}.

Computing the normal, we have

σt =

(
− sin

θ

2
cos θ,− sin

θ

2
sin θ, cos

θ

2

)
,

and

σθ = (− sin θ, cos θ, 0),
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and

σt × σθ =

(
− cos θ cos

θ

2
,− sin θ cos

θ

2
,− sin

θ

2

)
.

If the Mobius strip was orientable, then there would be a well-defined unit normal N defined at every
point of S. However, at the point σ(0, 0) = σ(0, 2π)

N = lim
θ→0+

Nσ = (−1, 0, 0)

but also
N = lim

θ→2π+
Nσ = (1, 0, 0).

5. Examples of surfaces

5.1. Level surfaces.

Definition 5.1. A level surface is given as a zero set of a smooth function, i.e.

{(x, y, z) ∈ R3 | f(x, y, z) = 0}

Theorem 5.1. Let S be a subset of R3 with the following property: for each point p ∈ S, there is an
open subset W ⊂ R3 containing the point p and a smooth function f : W → R such that

(1) S ∩W = {(x, y, z) ∈W | f(x, y, z) = 0};
(2) The gradient ∇f does not vanish at p.

Then S is a smooth surface.

Proof. Let p = (x0, y0, z0) and assume ∂f
∂z |p 6= 0. Consider the map F : W → R3 defined by

F (x, y, z) = (x, y, f(x, y, z)).

The Jacobian of F is

DF =

 1 0 0
0 1 0
fx fy fz


which is full rank, hence invertible at p. By the inverse function theorem, there exists an open set V
containing F (x0, y0, z0) = (x0, y0, 0) and a smooth map G : V → W such that W̃ = G(V ) is open

and F : W̃ → V and G : V → W̃ are inverse bijections. Since V is open, we can find open subsets
U1 ⊂ R2 containing (x0, y0) and U2 ⊂ R containing 0 such that U1 × U2 ⊂ V , hence we assume that
V = U1 × U2. Since F (G(x, y, w)) = (x, y, w) and F (x, y, z) = (x, y, f(x, y, z)), by injectivity of F , if
(x, y, f(x, y, z)) = (x, y, w), then G(x, y, w) = (x, y, z), i.e.

G(x, y, w) = (x, y, g(x, y, w))

for some smooth map G : U1 × U2 → R and

f(x, y, g(x, y, w)) = w

for all (x, y) ∈ U1 and w ∈ U2. Now define σ : U1 → R3 by

σ(x, y) = (x, y, g(x, y, 0)).

Then σ is a homeomorphism from U1 to S ∩ W̃ . It is smooth and regular since

σx × σy = (−gx,−gy, 1) 6= (0, 0, 0).

By doing this construction at each p ∈ S, we construct an atlas for S. �

Example 5.1. Consider the unit sphere S2. It can be given as the zero set of the function f(x, y, z) =
x2 + y2 + z2 − 1. Then ∇f = (2x, 2y, 2z) hence ‖∇f‖ = 2 on S2. Hence the previous theorem tells us
that S2 is a surface.

Example 5.2. Consider the zero set given by the function f(x, y, z) = x2 + y2 − z2. This set is a cone.
Its gradient is ∇f = (2x, 2y,−2z). At (0, 0, 0), we have ∇f = 0 and it is the only singular point, so
removing the vertex, we get that the cone is a smooth.
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5.2. Quadric surfaces.

6. First Fundamental Form

Analogous to how the local geometry of space curves is completely determined by two geometric
invariants, the curvature and the torsion, we now try to determine the local geometry for surfaces. These
will be the first and second fundamental form.

6.1. Lengths of curves on surfaces. Recall the arc-length of a curve γ is given by∫
‖γ̇(t)‖dt.

To calculate such an quantity, we need to know what the norm ‖ · ‖ is. Recall that we can obtain a norm
in an inner product space by defining ‖x‖2 = 〈x, x〉. In Rn, the inner product is usually taken to be the
dot product.

Definition 6.1. Let S be a surface and p ∈ S. The first fundamental form of S at p associates to
tangent vectors v, w ∈ TpS the scalar

〈v,w〉p,S = v ·w.
Hence the first fundamental form of S at p is the dot product restricted to tangent vectors to S at p.

On a surface patch σ, we can express the first fundamental form under the basis {σu(p), σv(p)}. Let
du and dv be the dual vectors of σu, σv respectively, i.e. linear maps du : TpS → R and dv : TpS → R
such that 

du(σu) = 1

du(σv) = 0

dv(σv) = 1

dv(σu) = 0.

Let v = λσu + µσv. Then

〈v,v〉 = 〈λσu + µσv, λσu + µσv〉
= λ2〈σu, σu〉+ 2λµ〈σu, σv〉+ µ2〈σv, σv〉.

Letting E = ‖σu‖2, F = 〈σu, σv〉 and G = ‖σv‖2, we have

〈v,v〉 = Eλ2 + 2Fλµ+Gµ2 = Edu(v)2 + 2Fdu(v)dv(v) +Gdv(v)2.

We write the first fundamental for of the surface patch σ(u, v) as

ds2 = Edu2 + 2Fdudv +Gdv2.

Some texts may write the coefficients E,F,G as E = g11, F = g12 and G = g22. The reason for this is
that the first fundamental form can be written as a quadratic form

〈v, w〉 = vtAw

where the matrix A is given by

A =

(
E F
F G

)
=

(
g11 g12
g12 g22

)
.

Suppose that σ̃(α, β) is a reparametrization of σ(u, v), with the first fundamental form given by

Ẽdα2 + 2F̃ dαdβ + G̃dβ2.

We compute their relation. From σ(u, v) = σ̃(α(u, v), β(u, v)), by chain rule,

σu = αuσ̃α + βuσ̃β

σv = αvσ̃α + βvσ̃β
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and so the dual vectors are given by (
dα
dβ

)
=

(
αu αv
βu βv

)(
du
dv

)
.

Then we see that

ds2 =
(
dα dβ

)(Ẽ F̃

F̃ G̃

)(
dα
dβ

)
=
(
du dv

)(αu αv
βu βv

)T (
Ẽ F̃

F̃ G̃

)(
αu αv
βu βv

)(
du
dv

)
=
(
du dv

)(E F
F G

)(
du
dv

)
.

Using this, we are now ready to give the length of a curve γ on a surface. Let γ lie on a surface patch σ.
Then

γ(t) = σ(u(t), v(t))

for some smooth functions u, v. By chain rule, we have γ̇ = u̇σu + v̇σv and so∫
‖γ̇‖dt =

∫ √
〈γ̇, γ̇〉dt

=

∫ √
Eu̇2 + 2Fu̇v̇ +Gv̇2dt.

Example 6.1 (Plane). For the plane given by

σ(u, v) = a + up + vq,

with p,q unit vectors such that p ⊥ q. Then σu = p and σv = q therefore E = G = 1 and F = 0, so the
first fundamental form is given by

ds2 = du2 + dv2.

Example 6.2 (Surface of revolution). Consider the surface given by

σ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Further assume that f(u) > 0 for all u and the curve given by u 7→ (f(u), 0, g(u)) is unit speed, i.e.

ḟ2 + ġ2 = 1. The basis vectors are given by

σu = (ḟ cos(v), ḟ sin(v), ġ)

and
σv = (−f sin(v), f cos(v), 0).

So taking the appropriate dot products, we get

E = 1, F = 0, G = f2.

Hence the first fundamental form is given by

ds2 = du2 + f(u)2dv2.

Example 6.3 (Generalized cylinder). We consider a generalized cylinder given by

σ(u, v) = γ(u) + va.

where γ is unit-speed, a is a unit vector, and γ is contained in a plane perpendicular to a. We have

σu = γ̇, σv = a.

Therefore
E = G = 1, F = 0,

and so the first fundamental form is simply

ds2 = du2 + dv2
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6.2. Isometries of surfaces.

Definition 6.2. If S1 and S2 are surfaces, a smooth map f : S1 → S2 is called a local isometry if it
takes any curve in S1 to a curve of the same length in S2. If a local isometry f : S1 → S2 exists, we say
that S1 and S2 are locally isometric.

To express the condition for a local isometry in a more useful form, we define the following

Definition 6.3. Let f : S1 → S2 be a smooth map and let p ∈ S1. For v,w ∈ TpS1, define the pullback
of f by

f∗〈v,w〉p = 〈Dpf(v), Dpf(w)〉f(p).
Then f∗〈 , 〉p is a symmetric bilinear form on TpS1.

Theorem 6.1. A smooth map f : S1 → S2 is a local isometry if and only if the symmetric bilinear forms
〈 , 〉p and f∗〈 , 〉p on TpS1 are equal for all p ∈ S1.

Proof. If γ1 is a curve on S1, the length of the part of γ1 with endpoints γ1(t0) and γ1(t1) is∫ t1

t0

〈γ̇1, γ̇1〉1/2dt.

The length of the corresponding part of the curve γ2 = f ◦ γ1 on S2 is∫ t1

t0

〈γ̇2, γ̇2〉1/2dt =

∫ t1

t0

〈Df(γ̇1), Df(γ̇1)〉1/2dt =

∫ t1

t0

f∗〈γ̇1, γ̇1〉1/2dt.

Conversely, suppose the lengths are the same for any curve γ. Then

〈v,v〉 = f∗〈v,v〉
for all v. Since they are symmetric bilinear forms, they give the same form. �

Thus f is a local isometry if and only if Dpf is an isometry for all p ∈ S1. It follows that every local
isometry is a local diffeomorphism. Let f : S1 → S2 be a local isometry and let p ∈ S1. If Dpf is not
invertible, then there is a nonzero tangent vector v ∈ Tp such that Dpf(v) = 0. However 0 6= ‖v‖2 =
‖Dpf(v)‖2 = 0, which is a contradiction so Dpf is invertible, hence f is a local diffeomorphism.

Corollary 6.1. A local diffeomorphism f : S1 → S2 is a local isometry if and only if, for any surface
patches σ1 of S1 and f ◦ σ1 of S2 have the same first fundamental form.

From this, we see that a cylinder and a plane are locally isometric since they have the same first
fundamental form. Now we consider another class of surfaces which are isometric to the plane.

Definition 6.4. A tangent developable is the union of the tangent lines to a curve in R3.

Let γ be a unit-speed curve. Then we parametrize the tangent developable as

σ(u, v) = γ(u) + vγ̇(u).

Now
σu × σv = vγ̈ × γ̇.

So for σ to be regular, we require γ̈ 6= 0, i.e. κ > 0. Under the Frenet-Serret frame, we have

σu × σv = −κvb.

Proposition 6.1. Any tangent developable is locally isometric to a plane.

Proof. Let γ be unit-speed and κ > 0. Now

E = ‖σu‖2 = 1 + v2κ2

F = σu · σv = 1

G = ‖σv‖2 = 1.

We know there exists a plane curve with κ hence its tangent developable which is a subset of the plane
has the same first fundamental form. �
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6.3. Conformal mappings of surfaces. Using the first fundamental form, we can express the angle of
intersection between two curves γ and γ̃ as

cos θ =
〈γ̇, ˙̃γ〉
‖γ̇‖‖ ˙̃γ‖

.

Definition 6.5. If S1 and S2 are surfaces, a conformal map f : S1 → S2 is a local diffeomorphism
such that, if γ1 and γ̃1 are any two curves on S1 that intersect, say at p ∈ S1, and if γ2 and γ̃2 are their
images under f , the angle of intersection of γ1 and γ̃1 at p is equal to the angle of intersection of γ2 and
γ̃2 at f(p).

Definition 6.6. As a special case, if σ : U → R3 is a surface, then σ may be viewed as a map from an
open subset of the plane, parametrized by (u, v) and the image S of σ, and say that σ is a conformal
parametrization or a conformal surface patch of S if this map between surfaces is conformal.

Theorem 6.2. A local diffeomorphism f : S1 → S2 is conformal if and only if there is a function
λ : S1 → R such that

f∗〈v,w〉p = λ(p)〈v,w〉p
for all p ∈ S1 and v,w ∈ TpS1.

Proof. Suppose f : S1 → S2 is a conformal map. Then

〈γ̇, ˙̃γ〉
‖γ̇‖

1
2 ‖ ˙̃γ‖

1
2

=
f∗〈γ̇, ˙̃γ〉

f∗‖γ̇‖
1
2 f∗‖ ˙̃γ‖

1
2

for all pairs of intersecting curves γ and γ̃ on S1. Note that for any v,w ∈ TpS1 there exists such curves.
Choose an orthonormal basis {v1,v2} of TpS1 with respect to the fundamental form 〈 , 〉. Let

λ = f∗‖v1‖2, µ = f∗〈v1,v2〉, ν = f∗‖v2‖2.
Applying to v = v1 and w = cos θv1 + sin θv2, we get

cos θ =
λ cos θ + µ sin θ√

λ(λ cos2 θ + 2µ sin θ cos θ + ν sin2 θ)
.

Leting θ = π
2 , we get µ = 0. Then

λ = λ cos2 θ + ν sin2 θ, for all θ ∈ R,

hence θ = π
2 , we get λ = ν. This implies f∗〈v,w〉 = λ〈v,w〉 for all v,w ∈ TpS1. The converse is

immediate. �

Interpreting this in terms of surface path,

Corollary 6.2. A local diffeomorphism f : S1 → S2 is conformal if and only if, for any surface patch σ
of S1, the first fundamental forms of the patches σ of S1 and f ◦ σ of S2 are proportional.

Example 6.4 (Stereographic projection). Consider the unit sphere S2. The stereographic projection
maps points on the sphere to a plane by considering the ray from the north pole N = (0, 0, 1) to a point
q = (x, y, z) ∈ S2 and extending the ray to a point on the z = 0 plane. It is given as the map

Π(x, y, z) =

(
x

1− z
,

y

1− z
, 0

)
.

Its inverse gives a surface parametrization of the sphere given by

σ1(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

We can parametrize the z = 0 plane by σ2(u, v) = (u, v, 0) and the first fundamental form is given by
du2 + dv2. The two parametrizations are related by

Π(σ1(u, v)) = σ2(u, v)
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Computing the first fundamental form of σ1, we compute

(σ1)u =

(
2(v2 − u2 + 1)

(u2 + v2 + 1)2
,

−4uv

(u2 + v2 + 1)2
,

4u

(u2 + v2 + 1)2

)
(σ1)v =

(
−4uv

(u2 + v2 + 1)2
,
2(u2 − v2 + 1)

(u2 + v2 + 1)2
,

4u

(u2 + v2 + 1)2

)
.

Taking the corresponding dot products, we get

E = G =
4

(u2 + v2 + 1)2
, F = 0

hence the first fundamental forms are a (non-constant) scalar multiple of each other.

6.4. Equiareal maps and a theorem of Archimedes. Recall from calculus:

Definition 6.7. The area Aσ(R) of the part σ(R) of a surface patch σ : U → R3 corresponding to a
region R ⊂ U is

Aσ(R) =

∫
R
‖σu × σv‖dudv.

In terms of the coefficients of the first fundamental form,

Proposition 6.2. If σu · σu = E, σu · σv = F and σv · σv = G, then

‖σu × σv‖ =
√
EG− F 2

Proof. From the magnitude of cross product formula, we have

‖σu × σv‖2 = ‖σu‖2‖σv‖2 sin2 θ = EG sin2 θ,

where θ is the angle between the vectors σu and σv. We then have

sin2 θ = 1− cos2 θ = 1− (σu · σv)2

‖σu‖2‖σv‖2
= 1− F 2

EG

so combining the two, we get

‖σu × σv‖2 = EG(1− F 2

EG
) = EG− F 2.

�

The area is well-defined by the following.

Proposition 6.3. The area of a surface patch is unchanged by reparametrization

Proof. Let σ : U → R3 be a surface patch and let σ̃ : Ũ → R3 be a reparametrization of σ. Let Φ : Ũ → U
be the reparametrization map, that is

σ̃(ũ, ṽ) = σ ◦ Φ(ũ, ṽ).

Note that

σ̃ũ × σ̃ṽ = det(DΦ)σu × σv,
where DΦ is the Jacobian of Φ. Hence by change of variables∫

R̃
‖σ̃ũ × σ̃ṽ‖dũdṽ =

∫
R̃
| det(DΦ)|‖σu × σv‖dũdṽ =

∫
R
‖σu × σv‖dudv.

�

Definition 6.8. Let S1 and S2 be two surfaces. A local diffeomorphism f : S1 → S2 is said to be
equiareal if it takes any region in S1 to a region of the same area in S2.
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Theorem 6.3. A local diffeomorphism f : S1 → S2 is equiareal if and only if, for any surface patch
σ(u, v) on S1, the coefficients of the first fundamental forms E1, F1, G1 and E2, F2, G2 of the patches σ1
and σ2 = f ◦ σ1, respectively, satify

E1G1 − F 2
1 = E2G2 − F 2

2

Proof. Suppose f is equiareal. For contradiction, assume without loss of generality that at some point p,√
E1G1 − F 2

1 >
√
E2G2 − F 2

2 . Then in some sufficiently small neighborhood, say R the same inequality

holds. Then for R̃ = f(R),

Aσ1(R) =

∫
R

√
E1G1 − F 2

1 dA >

∫
R̃

√
E2G2 − F 2

2 dÃ = Aσ2(R̃)

which is a contradiction. The converse is immediate. �

6.5. Spherical Geometry. Consider a unit sphere x2 + y2 + z2 = 1 sitting inside a unit cylinder
x2 + y2 = 1. Map a point p ∈ S2 to a point q on the cylinder by taking the straight projection from the
z-axis to the nearest point on the cylinder. Such a map is given by

f(x, y, z) =

(
x

(x2 + y2)
1
2

,
y

(x2 + y2)
1
2

, z

)
.

Theorem 6.4 (Archimedes theorem). The map f is an equiareal diffeomorphism.

Proof. Consider the parametrization of the sphere given by

σ1(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ)

Applying f , we have

σ2(θ, ϕ) = f(σ1(θ, ϕ)) = (cosϕ, sinϕ, sin θ).

Computing the first fundamental form, we have E1 = 1, F1 = 0, G1 = cos2 θ and E2 = cos2 θ, F2 = 0,
G2 = 1. �

We need the following fact:

Proposition 6.4 (Geodesics on a sphere). Let p and q be distinct points of S2. If p 6= −q, the short
great circle arc joining p and q is the unique curve of shortest length joining p and q.

Proof. By using rotational symmetry, we can assume p = (0, 0, 1), and let q lie on some great circle
containing p. Then the length of the segment connecting p and q is π

2 − α for some −π
2 ≤ α ≤ π

2 . The

first fundamental form in spherical coordinate parametrization is given by dθ2 + cos2 θdϕ2. Hence the
length of a curve γ(t) such that γ(t0) = p and γ(t1) = q is given by∫ t1

t0

√
θ̇2 + cos2 θϕ̇2dt.

The integrand is bounded below by ∫ t1

t0

|θ̇|dt =

∫ π
2

α
dθ =

π

2
− α.

when this minimum is achieved, we must have√
θ̇2 + cos2 θϕ̇2 = |θ̇|,

hence cos θϕ̇ = 0, hence ϕ is a constant, which must be zero. �

Archimedes’ Theorem can be applied to obtain the following

Theorem 6.5. The area of a spherical triangle on the unit sphere S2 with internal angles α, β, γ

α+ β + γ − π
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Proof. A spherical triangle is cut out by three great circles. Two great circles intersect twice and form
a lune of area 2ϕ where ϕ is the interior angle. The entire surface of the surface is covered by the three
pairs of lunes, however the triangle is counted in excess twice each, and there are two triangles, both of
equal area by symmetry so

4α+ 4β + 4γ − 4A = 4π,

where A is the area of the spherical triangle. �

7. Curvature of a surface

The curvature of a curve measured the difference between the curve and a straight line. We form an
analogous object which will measure the difference between the surface and a plane.

7.1. The second fundamental form. Let σ be a surface patch for an oriented surface with standard
unit normal N. As the parameters change from (u, v) to (u+ ∆u, v + ∆v), the surface moves away from
the plane through σ(u, v) parallel to the tangent plane by a distance

(σ(u+ ∆u, v + ∆v)− σ(u, v)) ·N.

By Taylor expansion, we have

σ(u+∆u, v+∆v)−σ(u, v) = σu∆u+σv∆v+
1

2
(σuu(∆u)2+2σuv∆u∆v+σvv(∆v)2)+higher order terms.

Since σu and σv are tangent to the surface, it is perpendicular to N, so the deviation of σ from its tangent
plane is

1

2
(L(∆u)2 + 2M∆u∆v +N(∆v)2) + higher order terms

where

L = σuu ·N, M = σuv ·N, N = σvv ·N.

Motivated by this, we have

Definition 7.1. The second fundamental form of the surface patch σ is given by

Ldu2 + 2Mdudv +Ndv2

Example 7.1. Consider the plane

σ(u, v) = a + up + vq

Since σu = p and σv = q are constant, we have σuu = σuv = σvv = 0, hence the second fundamental form
is zero.

Example 7.2. Consider a surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u));

assuming f(u) > 0 for all u and that the curve γ(t) = σ(t, 0) is unit speed. We can compute the relevant
quantities:

σu = (ḟ cos v, ḟ sin v, ġ), σv = (−f sin v, f cos v, 0)

σuu = (f̈ cos v, f̈ sin v,g̈), σuv = (−ḟ sin v, ḟ cos v, 0), σvv = (−f cos v,−f sin v, 0),

N =
σu × σv
‖σu × σv‖

= (−ġ cos v,−ġ sin v, ḟ)

and so the coefficients of the second fundamental form are

L = ḟ g̈ − f̈ ġ, M = 0, N = fġ.

For the unit sphere S2 in latitude-longitude coordinates, u = θ, v = ϕ, f(θ) = cos θ, g(θ) = sin θ. Then
the second fundamental form is

dθ2 + cos2 θdϕ2.
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7.2. The Gauss and Weingarten maps. We give an alternative approach to curvature by giving an
equivalent definition of the second fundamental form. In this approach, we investigate how the normal
vector varies across the surface.

Definition 7.2. The Gauss map of an oriented surface S is the map G : S → S2 such that G(p) = N(p),
where N(p) is the unit normal at p.

We can take its derivative as a map between surfaces so that

DpG : TpS → TG(p)S
2

Since the tangent plane at G(p) is the plane with normal vector N(p), we can identify the tangent spaces
of S and S2 hence

DpG : TpS → TpS.

Definition 7.3. Let p ∈ S. The Weingarten map Wp,S of S at p is defined by

Wp,S = −DpG.

The second fundamental form of S at p is the bilinear form on TpS given by

II(v,w) := 〈Wp,S(v),w〉, v,w ∈ TpS.

We need to show that this definition is equivalent to the one given in the previous section.

Lemma 7.1. Let σ(u, v) be a surface patch with standard unit normal N(u, v). Then

Nu · σu = −L, Nu · σv = Nv · σu = −M, Nv · σv = −N

Proof. Since σu and σv are tangent to the surface patch, we have

N · σu = N · σv = 0

Differentiating the above with respect to u and v give us the identities. �

Proposition 7.1. Let p be a point of a surface S, let σ(u, v) be a surface patch of S with p in its image.
Then, for any v,w ∈ TpS,

II(v,w) = Ldu(v)du(w) +M(du(v)dv(w) + du(w)dv(v)) +Ndv(v)dv(w).

Proof. By linearity, it suffices to show for v = σu and w = σv. Let σ(u0, v0) = p. Then, with the
derivatives evaluated at (u0, v0),

W (σu) = −DpG(σu) = − d

du
|u=u0G(σ(u, v0)) = − d

duu=u0
N(u, v0) = −Nu.

Hence

II(σu, σu) = 〈W (σu), σu〉 = −Nu · σu = L,

and similar computations hold for the other cases. �

Corollary 7.1. The second fundamental form is a symmetric bilinear form. Equivalently, the Weingarten
map is self-adjoint.

7.3. Normal and geodesic curvatures. On a surface, we can analyze the curvature of curves on the
surface. Consider curves on a cylinder versus curves on a sphere. It is possible for a curve to be straight
(in the ambient space R3 on a cylinder, but it is not possible to have such a curve on a sphere.

Let γ be a unit speed curve on an oriented surface S. Since γ̇ is perpendicular to N, we have an
orthogonal basis {γ̇,N,N× γ̇}. Since γ̈ is perpendicular to γ̇, we can write this as a linear combination
of N and N× γ̇:

γ̈ = κnN + κgN× γ̇.

Definition 7.4. κn is called the normal curvature and κg is called the geodesic curvature.

The following can be directly verified.
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Proposition 7.2. With the above notation, we have

κn =γ̈ ·N, κg = γ̈ · (N× γ̇),

κ2 = κ2n + κ2g
κn =κ cosψ, κg = ±κ sinψ

where κ is the curvature of γ and ψ is the angle between N and the principal normal n of γ.

The normal curvature and the second fundamental form are related by the following

Proposition 7.3. If γ is a unit-speed curve on an oriented surface S, its normal curvature is given by

κn = II(γ̇, γ̇)

This result means that if two curves touch each other at a point p on a surface S, then they have the
same normal curvature at the point p.

Proof. Since γ̇ is a tangent vector to S, N · γ̇ = 0. Hence, by product rule, N · γ̈ = −Ṅ · γ̇ so

κN = N · γ̈ = −Ṅ · γ = 〈W (γ̇), γ̇〉 = II(γ̇, γ̇).

�

Proposition 7.4 (Meusnier’s Theorem). Let p be a point of a surface S and let v be a unit tangent
vector to S at p. Let Πθ be the plane containing the line through p parallel to v and making an angle θ
with the tangent plane TpS, and assume that Πθ is not parallel to TpS. Suppose that Πθ intersects S in
a curve with curvature κθ.

Proof. Assume γθ is a unit-speed parametrization of the curve of intersection of Πθ and S. Then at p,
γ̇θ = ±v, so γ̈θ is perpendicular to v and is parallel to Πθ (since it is a plane curve of Πθ. Hence ψ = π

2 −θ
in Proposition 7.2. �

7.4. Parallel transport and covariant derivative. We now wish to take derivatives of vectors in
a tangent plane, however we must be careful that the derivative vector is also an element of the same
tangent plane.

Definition 7.5. Let γ be a curve on a surface S and let v be a tangent vector field along γ. The
covariant derivative of v along γ is the orthogonal projection ∇γv of dv

dt onto the tangent plane Tγ(t)S
at a point γ(t), i.e.,

∇γv = v̇ − (v̇ ·N)N,

where N is a unit normal to σ.

8. Gaussian curvature

Definition 8.1. Let W be the Weingarten map of an oriented surface S at a point p ∈ S. The Gaussian
curvature K of S at p is defined by

K = det(W ).

Proposition 8.1. Let σ be a surface patch of an oriented surface S. Then, with the above notation, the
matrix of W with respect to the basis {σu, σv} of TpS is(

E F
F G

)−1(
L M
M N

)
Corollary 8.1.

K =
LN −M2

EG− F 2
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Appendix A. Real Analysis

Suppose we are given the function f : R2 → R,

f(x, y) = 1 + x+ 2x2 + 3xy + 4xy2 + 5y4.

By using only differentiation and evaluating at a point, say (0, 0), how can we obtain the coefficients from
each term? This is the motivation in defining a Taylor series of a smooth function. In this example, we
see that

f(0, 0) = 0,
∂f

∂x
(0, 0) = 1,

1

2

∂2f

∂x2
(0, 0) = 2

∂2f

∂x∂y
(0, 0) = 3,

1

2

∂3f

∂x∂y2
(0, 0) = 4,

1

4!

∂4f

∂y4
(0, 0) = 5.

Writing this in general, we obtain

Definition A.1 (Taylor Expansion). Let f : R2 → R be a smooth function. Its Taylor Expansion is
given by

f(x, y) ∼
∞∑

α,β=0

1

α!β!

∂α+βf

∂xα∂yβ
xαyβ.

Note that the function is not necessarily equal to its Taylor series, however is a useful approximation.
Another theorem we use often is

Theorem A.1 (Inverse Function Theorem). Let f : U → Rn be a smooth map defined on an open subset
U of Rn. Assume that at the point x0 ∈ U , the Jacobian matrix J(f) is invertible. Then, there is an
open subset V of Rn and a smooth map g : V → Rn such that

(1) y0 = f(x0) ∈ V
(2) g(y0) = x0
(3) g(V ) ⊂ U
(4) g(V ) is an open subset of Rn
(5) f(g(y)) = y for all y ∈ V .

In particular, f : g(V )→ V and g = f−1 : V → g(V ).

Theorem A.2 (Change of variables). Suppose that Φ is a continuously differentiable transformation

such that detDΦ 6= 0 and maps the region R̃ to R, i.e., Φ(R̃) = R. Suppose that f is continuous on R.∫
R̃
f(ũ, ṽ)|detDΦ|dũdṽ =

∫
R
f(u, v)dudv

Appendix B. Topology

For a general topological space, we have the following definition of a continuous function.

Definition B.1. Let X and Y be two topological spaces. A function f : X → Y is continuous if given
an open set V ⊂ Y , the preimage

f−1(V ) = {x ∈ X | f(x) = y for y ∈ V }
is open.

If we specialize to metric spaces, the usual ε− δ definition is equivalent.
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