Lecture Note for Math 220B Complex Analysis of One Variable

Song-Ying Li

University of California, Irvine

Contents

1	The	Residue theorem applied to real integrals	3
	1.1	Several types of real integrals	3
	1.2	The Logarithm function	
	1.3	Real integrals involving $\ln x$	
	1.4	Homework 1	
2	The	Zero Set of Holomorphic Functions	18
	2.1	The Argument Principle and its Applications	18
	2.2	The Open Mapping theorem	20
	2.3	Rouché Theorems	
	2.4	Applications and Examples	
	2.5	Hurwitz's Theorem and Applications	
	2.6	Examples/Applications	
	2.7	Homework 2	
3	The	Geometry of Holomorphic Mappings	27
	3.1	The Maximum Modulus Theorem	27
	3.2	Schwarz Lemma	
		3.2.1 Schwarz-Pick Lemma	
	3.3	Homework 3	
	3.4	Conformal and proper holomorphic function maps	
	3.5	Automorphism groups	
	3.6	Möbius transformations	

	3.7	Cross ratio	3
	3.8	Properties of the Cross Ratio	9
		3.8.1 Symmetric points	9
	3.9	Construction of conformal maps	1
	3.10	Homework 4	4
		Midterm Review	6
		Normal families	3
		3.12.1 Examples for normal families 50	Э
	3.13	The Riemann Mapping Theorem	2
		3.13.1 Existence of the Riemann map	2
		3.13.2 Proof of Riemann mapping theorem 5	4
	3.14	Homework 5	5
		The Reflection Principle	7
		Homework 6	3
		Singular Points and Regular Points	9
4	Infir	aite Products 60)
	4.1	Basic properties of infinite products 6	
	4.2	Examples	
	4.3	Infinite Products and Factorization Factors 6	
	4.4	Weierstrass Factorization Theorem	
	4.5	Application to Singular Points	
	4.6	Mittag-Leffler's Theorem	
	4.7	Homework 7	
	1.1		_
$\mathbf{L}^{\mathbf{i}}$	ist (of Figures	
	1	The nice contour	ŏ
	2	The semi-circular contour with a bump	3
	3	Another common contour	9
	4	The contour that works well with $ln(x)$	4
	5	Conformal Map 1	2
	6	Upper half disc to unit disc	3
	7	Region between two circles to unit disc 4	4
	8	conformal map 4	
		wledgement: I would like to thank J. N. Treuer for reading through draft and making some revisions.	1

1 The Residue theorem applied to real integrals

We are going to apply the Residue theorem to evaluate integrals of real-valued functions over subsets of \mathbb{R} . We will call such integrals real integrals.

1.1 Several types of real integrals

I) Let R(x,y) be a rational function in x and y. How does one evaluate

$$\int_0^{2\pi} R(\cos t, \sin t) dt?$$

Solution. Let

$$z = e^{it}, \quad t \in [0, 2\pi).$$

Then

$$\cos t = \frac{z + \frac{1}{z}}{2} = \frac{z^2 + 1}{2z}, \quad \sin t = \frac{z - \frac{1}{z}}{2i} = \frac{z^2 - 1}{2iz} \quad \text{and } dt = \frac{dz}{iz}.$$

Therefore,

$$\int_0^{2\pi} R(\cos t, \sin t) dt = \int_{|z|=1} R(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}) \frac{1}{iz} dz.$$

We can apply the Residue theorem to evaluate the right hand side.

EXAMPLE 1 For a > 1, evaluate the integral

$$\int_0^{2\pi} \frac{1}{a + \cos t} dt$$

Solution. Let

$$z =: e^{it}$$

Then

$$\cos t = \frac{1}{2}(z + \frac{1}{z}), \quad dz = izdt$$

Therefore,

$$\int_{0}^{2\pi} \frac{1}{a + \cos t} dt = \int_{|z|=1}^{2\pi} \frac{1}{a + \frac{1}{2}(z + 1/z)} \frac{1}{iz} dz$$

$$= \frac{2}{i} \int_{|z|=1}^{2\pi} \frac{1}{2az + z^{2} + 1} dz$$

$$= 4\pi \operatorname{Res} \left(\frac{1}{z^{2} + 2az + 1}; -a + \sqrt{a^{2} - 1} \right)$$

$$= \frac{4\pi}{2(-a + \sqrt{a^{2} - 1}) + 2a}$$

$$= \frac{2\pi}{\sqrt{a^{2} - 1}}.$$

II) How does one evaluate

$$\int_{-\infty}^{\infty} R(x)dx?$$

THEOREM 1.1 Let $P_m(x)$ and $Q_n(x)$ be polynomials of degree m and n respectively and $(P_m, Q_n) = 1$. Let $R(x) = \frac{P_m(x)}{Q_n(x)}$. Suppose also that $Q_n(x) \neq 0$ for all $x \in \mathbb{R}$ and $n - m \geq 2$. Then

$$\int_{-\infty}^{\infty} R(x)dx = 2\pi i \left(\sum_{k=1}^{\ell} Res(R; z_k)\right)$$

where z_1, \dots, z_ℓ are the zeros of Q_n not counting multiplicity in the upper half plane \mathbb{R}^2_+ .

Proof. Let $\{z_1,...,z_\ell\}$ be the zeros stated in the theorem's hypothesis and choose r >> 1 such that $\{z_1, \cdots, z_\ell\} \subset D(0,r)$. Apply the Residue theorem to R(z) on $D_r = \{z \in \mathbb{R}^2_+ : |z| < r\}$. Then

$$\int_{-r}^{r} R(x) = -\int_{C_r} R(z) dz + 2\pi i \sum_{k=1}^{\ell} \text{Res}(R, z_k)$$

where $C_r = \{z = re^{i\theta} : 0 \le \theta \le \pi\}$. Since $n \ge m + 2$, we have

$$\lim_{r \to \infty} \int_{C_r} R(z) dz = 0.$$

The theorem is proved.

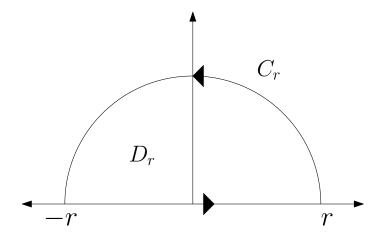


Figure 1: The nice contour

EXAMPLE 2 Evaluate the integral

$$\int_0^\infty \frac{1}{(1+x^2)^2} dx.$$

Solution. Let $f(z) = 1/(z^2 + 1)^2$. Then

$$\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{(1+x^2)^2} dt$$

$$= \pi i \text{Res}(f; i) = \pi i \frac{-2}{(z+i)^3} \Big|_{z=i}$$

$$= -\frac{2\pi i}{(2i)^3} = \frac{\pi}{4}$$

III) How does one evaluate

$$\int_{-\infty}^{\infty} f(x)e^{ix}dx?$$

Lemma 1.2 Let f(z) be meromorphic in \mathbb{R}^2_+ such that

$$\lim_{r \to \infty} f(re^{i\theta}) = 0$$

uniformly for $\theta \in (0, \pi)$. Let $\{z_k : 1 \le k \le m\}$ be zero set of f in \mathbb{R}^2_+ . Then

$$\lim_{R \to \infty} \int_{C_R} f(z) e^{iz} dz = 0$$

where
$$C_R = \{z = x + iy \in \mathbb{C} : |z| = R, y > 0\}$$

Proof. Let $M_R = \max\{|f(Re^{i\theta})| : \theta \in [0, \pi]\}$. Then

$$\left| \int_{C_R} f(z)e^{iz}dz \right| \leq \int_0^{\pi} |f(Re^{i\theta})|e^{-R\sin\theta}Rd\theta$$

$$\leq M_R \int_0^{\pi} e^{-R\sin\theta}Rd\theta$$

$$= 2M_R \int_0^{\pi/2} e^{-R\sin\theta}Rd\theta$$

$$\leq 2M_R \int_0^{\pi/2} e^{-2R\theta/\pi}Rd\theta$$

$$\leq \pi M_R \int_0^{\infty} e^{-t}dt$$

$$= \pi M_R \to 0 \quad \text{as } R \to \infty$$

where the third inequality follows because $sin(\theta)$ is concave on $[0, \frac{\pi}{2}]$; hence $sin(\theta) > \frac{2\theta}{\pi}$ on $[0, \frac{\pi}{2}]$.

THEOREM 1.3 Let f(z) be meromorphic in \mathbb{R}^2_+ such that

$$\lim_{r \to \infty} f(re^{i\theta}) = 0$$

uniformly for $\theta \in (0,\pi)$. Let $\{z_k : 1 \leq k \leq m\}$ be zero set of f in \mathbb{R}^2_+ . Then

$$\int_{-\infty}^{\infty} f(x)e^{ix}dx = 2\pi i \sum_{k=1}^{m} Res(fe^{iz}; z_k)$$

Proof. Let $D_R = \{z \in \mathbb{R}^2_+ : |z| < R\}$. By the Residue theorem, one has

$$\int_{-R}^{R} f(x)e^{ix} + \int_{C_R} f(z)e^{iz}dz = \int_{\partial D_R} f(z)e^{iz}dz = 2\pi i \sum_{z_k \in D_R} \operatorname{Res}(f(z)e^{iz}; z_k)$$

Let $R \to \infty$. By the previous lemma,

$$\int_{-\infty}^{\infty} f(x)e^{ix} = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f(z)e^{iz}; z_k)$$

The proof is complete.

EXAMPLE 3 Evaluate the following integral:

$$\int_0^\infty \frac{\cos x}{1+x^2} dx$$

Solution. Since

$$\int_0^\infty \frac{\cos x}{1+x^2} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\cos x}{1+x^2} dx$$
$$= \frac{1}{2} \operatorname{Re} \int_{-\infty}^\infty \frac{e^{ix}}{1+x^2} dx$$
$$= Re \Big(\pi i \operatorname{Res} (\frac{e^{iz}}{1+z^2}; i) \Big)$$
$$= \frac{\pi}{2e}.$$

EXAMPLE 4 Evaluate the following integral:

$$\int_0^\infty \frac{\sin x}{x} dx$$

Solution. We would like to write

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\sin x}{x} dx = \frac{1}{2} \operatorname{Im} \int_{-\infty}^\infty \frac{e^{ix}}{x} dx.$$

However, the last equality may cause trouble because the last integral does not converge. So, instead, we write

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \lim_{R \to \infty, r \to 0} \left[\int_{-R}^{-r} \frac{\sin(x)}{x} dx + \int_{r}^{R} \frac{\sin x}{x} dx \right]$$

Let

$$D_{r,R} = \{ z \in \mathbb{R}^2_+ : |z| < R, |z| > r \}$$

and

$$\partial D_{r,R} = C_R \cup [-R, -r] \cup (-C_r) \cup [r, R].$$

Thus

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \lim_{R \to \infty, r \to 0} \operatorname{Im} \left[\int_{-R}^{-r} \frac{e^{ix}}{x} dx + \int_{r}^{R} \frac{e^{ix}}{x} dx \right]$$

$$= \lim_{R \to \infty, r \to 0} \operatorname{Im} \left[\int_{\partial D_{r,R}} \frac{e^{iz}}{z} dz - \int_{C_{R}} \frac{e^{iz}}{z} dz + \int_{C_{r}} \frac{e^{iz}}{z} dz \right]$$

$$= 0 + 0 + \lim_{r \to 0} \operatorname{Im} \int_{C_{r}} \frac{e^{iz}}{z} dz$$

$$= \lim_{r \to 0} \operatorname{Im} \int_{0}^{\pi} \frac{e^{ri\cos\theta - r\sin\theta}}{re^{i\theta}} ire^{i\theta} d\theta$$

$$= \pi$$

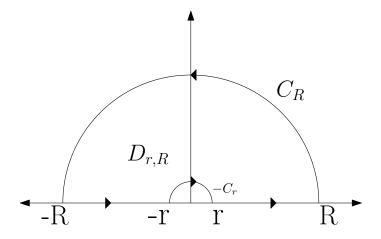


Figure 2: The semi-circular contour with a bump

where the third equality follows because $\frac{e^{iz}}{z}$ is holomorphic in a neighborhood of $D_{r,R}$ and lemma 1.2. Therefore,

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

EXAMPLE 5 Evaluate the following integral:

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx.$$

Solution.

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx = -\frac{\sin^2 x}{x} \Big|_0^\infty + \int_0^\infty \frac{2 \sin x \cos x}{x} dx$$
$$= \int_0^\infty \frac{\sin(2x)}{x} dx$$
$$= \int_0^\infty \frac{\sin(2x)}{2x} d(2x)$$
$$= \frac{\pi}{2}. \quad \square$$

EXAMPLE 6 Evaluate the following integral:

$$\int_0^\infty \frac{1 - \cos x}{x^2} dx$$

Solution.

$$\int_0^\infty \frac{1 - \cos x}{x^2} dx = -\frac{1 - \cos x}{x} \Big|_0^\infty + \int_0^\infty \frac{\sin x}{x} = \frac{\pi}{2}. \quad \Box$$

IV) Choosing special integral path.

EXAMPLE 7 Evaluate the following integral:

$$\int_0^\infty \frac{1}{1+x^3} dx.$$

Solution. We know that $(e^{2\pi i/3})^3 = 1$. Choose

$$D_R = \{ z = |z|e^{i\theta} : 0 < \theta < 2\pi/3, |z| < R \}$$

Then for R > 2,

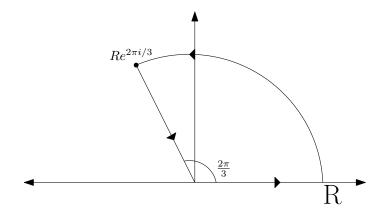


Figure 3: Another common contour

$$\int_{\partial D_R} \frac{1}{1+z^3} dz = 2\pi i \text{Res}(\frac{1}{1+z^3}; e^{i\pi/3}) = \frac{2\pi i}{3e^{2\pi i/3}}$$

On the other hand,

$$\int_{\partial D_R} \frac{1}{1+z^3} dz = \int_0^R \frac{1}{1+x^3} dx + \int_{C_R} \frac{1}{1+z^3} dz + \int_R^0 \frac{1}{1+x^3} e^{2\pi i/3} dx$$

$$\to (1 - e^{2\pi i/3}) \int_0^\infty \frac{1}{1+x^3} dx$$

as $R \to \infty$. Therefore,

$$\int_0^\infty \frac{1}{1+x^3} dx = \frac{2\pi i}{3(1-e^{i2\pi/3})e^{2\pi i/3}}$$

$$= \frac{2\pi i}{3} \frac{1}{(e^{2\pi i/3} - e^{-2\pi i/3})}$$

$$= \frac{\pi}{3\sin\frac{2\pi}{3}}$$

$$= \frac{2\pi\sqrt{3}}{9}. \quad \Box$$

EXAMPLE 8 Integrate

$$\int_0^\infty \frac{x}{(1+x^3)^2} dx.$$

You can do the same thing and get

$$(1 - e^{4\pi i/3}) \int_0^\infty \frac{x}{(1+x^3)^2} dx = 2\pi i \text{Res}\left(\frac{x}{(1+x^3)^2}; e^{\pi i/3}\right)$$

It is left to the reader to finish the computation.

1.2 The Logarithm function

From calculus, $f(x) = e^x : (-\infty, \infty) \to (0, \infty)$ is one-to-one and onto; its inverse function can be denoted either $\log x$ or $\ln x$. The exponential function extends to an entire holomorphic function $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ defined by

$$f(z) = e^z = e^{x+iy} = e^x e^{iy}.$$

It is easy to see that

$$f(z + 2\pi i) = f(z)$$

and if $S_0 = \{x + iy : x \in \mathbb{R}, 0 < y < 2\pi\}$, then $f(z)|_{S_0} : S_0 \to \mathbb{C} \setminus [0, \infty)$ is one-to-one and onto. The inverse function of $f(z)|_{S_0}$ is called the principle log function, denoted by $\log : \mathbb{C} \setminus [0, \infty) \to S_0$ and it is defined by

$$\log z = \log |z| + i\theta, \quad -\pi < \theta < \pi.$$

For each integer k, let $S_k = \{2\pi i k\} + S_0$, then $\log : \mathbb{C} \setminus [0, \infty) \to S_k$ is a branch of Log defined by

$$\text{Log } z = \log z + 2k\pi i$$

The general $Log\ z$ is an infinitely many valued function.

Definition 1.4 Let D be a domain and f a continuous function on D. We say that f is a branch of Log on D if

$$e^{f(z)} = z, \quad z \in D.$$

EXAMPLE 9 Let $D = \mathbb{C} \setminus \{0\}$. Then Log cannot have a branch on D.

Proof. Suppose there is a continuous function f on D such that $e^{f(z)} = z$ on D. Then f is holomorphic and

$$f'(z) = \frac{1}{z}, \quad z \in D.$$

Then

$$0 = \int_{|z|=1} f'(z)dz = \int_{|z|=1} \frac{1}{z}dz = \log z \Big|_{1}^{e^{2\pi i}} = 2\pi i$$

This is a contradiction.

Remark: Let D be a simply connected domain in \mathbb{C} such that $0 \notin D$. Then there is a branch of Log on D.

The function z^{α} is defined by

$$z^{\alpha} = e^{\alpha \text{Log}z}$$

EXAMPLE 10 Find all z such that $z^{10} = -1$.

Solution. Since $-1 = e^{i\pi}$, we have

$$Log(-1) = 0 + (2k+1)\pi i, \quad k \in \mathbb{Z}.$$

Thus

$$(-1)^{1/10} = e^{\frac{(2k+1)\pi}{10}i}, \quad k = 0, 1, \dots, 9.$$

Let

$$R(z) = \frac{P_m(z)}{Q_n(z)}, \quad n - m - \alpha > 1$$

How does one integrate

$$\int_0^\infty R(x)x^\alpha dx?$$

When $\alpha \notin \mathbb{Z}$, by an argument similar to the one used in theorem 1.1,

$$(1 - e^{i\alpha 2\pi}) \int_0^\infty R(x) x^{\alpha} dx = 2\pi i \sum \text{Res}(R(z)z^{\alpha}, z_k)$$

EXAMPLE 11 Integrate

$$\int_0^\infty \frac{x^{1/3}}{1+x^3} dx$$

Solution. $\frac{1}{1+z^3}$ has three poles:

$$z_1 = e^{i\pi/3}$$
, $z_2 = -1$ and $z_3 = e^{5\pi i/3}$.

Therefore,

$$(1 - e^{2\pi i/3}) \int_0^\infty \frac{x^{1/3}}{1 + x^3} dx = 2\pi i \left(\frac{e^{i\pi/9}}{3e^{2\pi i/3}} + \frac{e^{\pi i/3}}{3} + \frac{e^{5\pi i/9}}{3e^{10\pi i/3}}\right) = \frac{2\pi i}{3} \left(-e^{i4\pi/9} - e^{2\pi i/9} + e^{\pi i/3}\right).$$

Therefore,

$$\int_0^\infty \frac{x^{1/3}}{1+x^3} dx = \frac{2\pi i}{3} \left(-\frac{e^{i4\pi/9}}{(1-e^{2\pi i/3})} - \frac{e^{2\pi i/9}}{(1-e^{2\pi i/3})} + \frac{e^{\pi i/3}}{(1-e^{2\pi i/3})} \right)$$

$$= \frac{\pi}{3} \left(-\frac{e^{i4\pi/9} + e^{2\pi i/9}}{\frac{(1-e^{2\pi i/3})}{2i}} + \frac{1}{\frac{e^{-\pi i/3} - e^{\pi i/3}}{2i}} \right)$$

$$= \frac{\pi}{3} \left(-\frac{e^{i\pi/9} + e^{-\pi i/9}}{\frac{(e^{-\pi i/3} - e^{\pi i/3})}{2i}} - \frac{1}{\sin(\pi/3)} \right)$$

$$= \frac{\pi}{3} \left(\frac{2\cos(\pi/9)}{\sin(\pi/3)} - \frac{1}{\sin(\pi/3)} \right).$$

Another way to compute is to use the argument preceding this example:

$$(1 - e^{2\pi i/9}e^{2\pi i/3}) \int_0^\infty \frac{x^{1/3}}{1 + x^3} dx = 2\pi i \frac{e^{\pi i/9}}{3e^{i\pi 2/3}} = -\frac{2\pi i}{3}e^{4\pi i/9}.$$

Therefore,

$$\int_0^\infty \frac{x^{1/3}}{1+x^3} dx = -\frac{\pi}{3} \frac{2i}{e^{-4\pi i/9} - e^{4\pi i/9}} = \frac{\pi}{3} \frac{1}{\sin(4\pi/9)}.$$

1.3 Real integrals involving $\ln x$

V. Integration involved in $\ln x$

Let $R = \frac{P}{Q}$ be rational with $\deg(Q)$ - $\deg(P) \ge 2$ and $Q(x) \ne 0$ on $[0, \infty)$. Evaluate

$$\int_0^\infty R(x) \ln x dx.$$

Discussion: Let $D_r = D(0,r) \setminus [0,r)$. We view $\partial D_r = (0,r) \cup C_r \cup [re^{2\pi i},0)$ where $C_r = \partial D(0,r)$. Choose r >> 1 such that all of the poles of R, say z_1, \dots, z_n , are in D(0,r). Then

$$\int_{\partial D_r} R(z) \ln z dz = 2\pi i \sum_{k=1}^n \operatorname{Res}(R(z) \ln z; z_k)$$

On the other hand,

$$\int_{\partial D_r} R(z) \ln z dz = \int_0^r R(x) \ln x dx + \int_{C_r} R(z) \ln z dz + \int_r^0 R(x) (\ln x + 2\pi i) dx$$
$$= \int_{C_r} R(z) \ln z dz - \int_0^r R(x) 2\pi i dx.$$

Since $n - m \ge 2$,

$$|R(z)| \le C|z|^{m-n} \le C|z|^{-2}$$
, when $|z| >> 1$

and

$$\begin{split} |\int_{C_r} R(z) \ln z dz| &\leq \int_0^{2\pi} |R(Re^{i\theta})| |\ln r + i\theta| r d\theta \\ &\leq C \int_0^{2\pi} r^{-2} (\ln r + 2\pi) r d\theta \\ &\leq 2\pi C r^{-1} (\ln r + 2\pi) \\ &\rightarrow 0 \end{split}$$

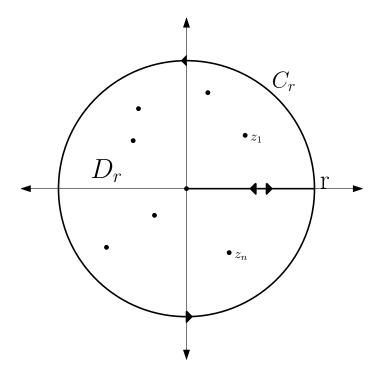


Figure 4: The contour that works well with ln(x)

as $r \to \infty$. Combining the above and letting $r \to \infty$, one has

$$-\int_0^\infty R(x)dx = \sum_{k=0}^n \operatorname{Res}(R(z)\ln z, z_k)$$

We cannot get $\int_0^\infty R(x) \ln x \, dx$ with this calculation. Instead, we replace $R(z) \ln z$ by $R(z)(\ln z)^2$ and essentially repeat the above argument. On the one hand,

$$\int_{\partial D_r} R(z)(\ln z)^2 dz = 2\pi i \sum_{k=1}^n \operatorname{Res}(R(z)(\ln z)^2; z_k)$$

On the other hand,

$$\int_{\partial D_r} R(z)(\ln z)^2 dz = \int_0^r R(x)(\ln x)^2 dx + \int_{C_r} R(z)(\ln z)^2 dz + \int_r^0 R(x)(\ln x + 2\pi i)^2 dx$$
$$= \int_{C_r} R(z)\ln z dz - 2\int_0^r R(x)2\pi i \ln x dx - (2\pi i)^2 \int_0^r R(x) dx.$$

Since $n - m \ge 2$,

$$|R(z)| \le C|z|^{m-n} \le C|z|^{-2}$$
, when $|z| >> 1$

and

$$|\int_{C_r} R(z)(\ln z)^2 dz| \leq \int_0^{2\pi} |R(Re^{i\theta})| |\ln r + i\theta|^2 r d\theta$$

$$\leq C \int_0^{2\pi} r^{-2} (\ln r + 2\pi)^2 r d\theta$$

$$\leq 2\pi C r^{-1} (\ln r + 2\pi)^2$$

$$\to 0$$

as $r \to \infty$. Combining the above and letting $r \to \infty$, one has

$$-2\int_0^\infty R(x)\ln x dx - 2\pi i \int_0^\infty R(x) dx = \sum_{k=0}^n \text{Res}(R(z)(\ln z)^2, z_k)$$

Therefore, we have

THEOREM 1.5 For any rational function $R(z) = P_m(z)/Q_n(z)$ with $n - m \ge 2$ and $Q_n(x) \ne 0$ on $[0, \infty)$, one has

$$\int_0^\infty R(x) \ln x dx = -\frac{1}{2} \sum_{k=0}^n Res(R(z)(\ln z)^2, z_k) - \pi i \int_0^\infty R(x) dx$$

where z_0, \dots, z_n are the poles of R(z) in \mathbb{C} .

EXAMPLE 12 Evaluate

$$\int_0^\infty \frac{\ln x}{1+x^2} dx.$$

Solution. We will provide a few methods to solve this problem.

Method 1. We can use the above formula to evaluate it.

Since $1 + z^2 = 0$ if and only if $z = \pm i$, and

$$\operatorname{Res}(\frac{(\ln z)^2}{1+z^2}, i) = \frac{(\ln i)^2}{2i} = \frac{(\pi i/2)^2}{2i} = -\frac{\pi^2}{8i}$$

and

$$\operatorname{Res}(\frac{(\ln z)^2}{1+z^2}, -i) = \frac{(\ln(-i))^2}{2i} = \frac{(3\pi i/2)^2}{-2i} = \frac{9\pi^2}{8i}$$

Thus

$$\operatorname{Res}(\frac{(\ln z)^2}{1+z^2},i) + \operatorname{Res}(\frac{(\ln z)}{1+z^2},-i) = -\frac{\pi^2}{8i} + \frac{9\pi^2}{8i} = -\pi^2i.$$

Therefore,

$$\int_0^\infty \frac{\ln x}{1+x^2} dx = \pi^2 i - 2\pi i \int_0^\infty \frac{1}{1+x^2} dx = \pi^2 i - 2\pi i \frac{\pi}{2} = 0.$$

Method 2. Let $D_R = \{z = re^{i\theta} \in \mathbb{C} : |z| < R, 0 < \theta < \pi\}$ with R > 1.

Then

$$\int_{\partial D_R} \frac{\ln z}{1+z^2} dz = 2\pi i \frac{\ln i}{2i} = \pi(\pi i/2) = \frac{\pi^2}{2} i$$

and

$$\int_{\partial D_R} \frac{\ln z}{1+z^2} dz \quad \frac{\rightarrow}{R\rightarrow\infty} \quad \int_0^\infty \frac{\ln x}{1+x^2} dx + \int_\infty^0 \frac{\ln r + \pi i}{1+r^2} (-1) dr + 0 = 2 \int_0^\infty \frac{\ln x}{1+x^2} dx + \pi i \frac{\pi}{2} dx + \pi i \frac{\pi$$

Therefore,

$$\int_0^\infty \frac{\ln x}{1+x^2} dx = 0.$$

Remark. The above argument can be applied to certain rational functions R satisfying R(-x) = R(x). More precisely, we have

THEOREM 1.6 For any rational function $R(z) = P_m(z)/Q_n(z)$ with $n - m \ge 2$, $Q_n(x) \ne 0$, and R(-x) = R(x) on $[0, \infty)$,

$$\int_0^\infty R(x) \ln x dx = \pi i \left[\sum_{k=0}^n Res(R(z)(\ln z), z_k) - \frac{1}{2} \int_0^\infty R(x) dx \right]$$

where z_0, \dots, z_n are the poles of R(z) in \mathbb{R}^2_+ .

Method 3. In fact, using the substitution $x \mapsto 1/x$,

$$\int_0^\infty \frac{\ln x}{1+x^2} dx = \int_0^1 \frac{\ln x}{1+x^2} dx + \int_1^\infty \frac{\ln x}{1+x^2} dx$$
$$= \int_\infty^1 \frac{\ln x}{1+x^2} dx + \int_1^\infty \frac{\ln x}{1+x^2} dx$$
$$= 0.$$

The arguments are done.

1.4 Homework 1

- Applications of Residue theorem to real integrals; branches of the logarithm
 - 1. Evaluate

$$\int_0^{2\pi} \frac{1}{1+\sin^2\theta} d\theta$$

2. Evaluate

$$\int_0^\infty \frac{1}{1+x^5} dx$$

3. Evaluate

$$\int_0^\infty \frac{x^4}{1+x^{10}} dx$$

4. Evaluate

$$\int_0^{2\pi} \frac{d\theta}{5 + 3\cos\theta}$$

5. Evaluate

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx$$

6. Evaluate

$$\int_0^\infty \frac{\cos^2 x}{1+x^2} dx$$

7. Evaluate

$$\int_0^\infty \frac{x^{1/4}}{1+x^3} dx$$

8. Evaluate

$$\int_0^\infty \frac{x}{\sinh x} dx$$

9. Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{\frac{x}{3}}}{8 + e^x} dx$$

10. Evaluate

$$\int_0^\infty \frac{\ln x}{1+x^2} dx, \quad \int_0^\infty \frac{\ln x}{1+x^3} dx$$

- 11. Let $\gamma:[0,\infty)\to\mathbb{C}$ be defined by $\gamma(t)=t^2+it$. Prove that there is a branch f(z) of the logarithm on $\mathbb{C}\setminus\gamma([0,\infty))$.
- 12. Prove or disprove: If f is holomorphic on D(0,1) such that $f(z)^3$ is a polynomial, then f is a polynomial.

2 The Zero Set of Holomorphic Functions

Let D be a domain in \mathbb{C} and let f be holomorphic function on D. Let $Z_D(f)$ denote the zero set of f on D counting multiplicity and $\#(Z_D(f))$ denote the cardinality of $Z_D(f)$. Then the following hold:

- 1. If $f \not\equiv 0$ then $Z_D(f)$ is at most countable.
- 2. If D_1 is any compact subset of D, then $\#(Z_D(f) \cap D_1)$ is finite.

Question: How can one determine $\#(Z_D(f) \cap D_1)$?

2.1 The Argument Principle and its Applications

EXAMPLE 13 Consider $f(z) = z^{10}$ on D(0,R) for any R > 0. We know that $\#Z_{D(0,R)}(f) = 10$.

To understand the intuition behind the argument principle, consider these formal calculations:

$$10 = \frac{1}{2\pi i} \log z^{10} \Big|_{R}^{Re^{2\pi i}}$$
$$= \frac{1}{2\pi i} \int_{|z|=R} (\log z^{10})' dz$$
$$= \frac{1}{2\pi i} \int_{|z|=R} \frac{(z^{10})'}{z^{10}} dz.$$

Let

$$f(z) = a \prod_{j=1}^{n} (z - z_j).$$

be a polynomial of degree n. Then

$$\frac{f'(z)}{f(z)} = (\log(f(z))' = \sum_{j=1}^{n} \frac{1}{z - z_j}.$$

If D is a bounded domain with piecewise C^1 boundary in $\mathbb C$ such that $z_1, \dots, z_k \in D$ and $z_j \notin \overline{D}$ when j > k then

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{k} \frac{1}{2\pi i} \int_{\partial D} \frac{1}{z - z_j} dz = k$$

In general, we have the following theorem.

THEOREM 2.1 (Argument Principle) Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let f(z) be holomorphic in D and $f \in C(\overline{D})$ and $f(z) \neq 0$ on ∂D . Then

$$\#(Z_D(f)) = \frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz$$

where $\#(Z_D(f))$ is the number of the zeros of f in D counting multiplicity.

Proof. Let $Z_D(f) = \{z_1, \dots, z_n\}$ be the set of zeros of f in D counting multiplicity. Then

$$f(z) = \prod_{j=1}^{n} (z - z_j)H(z)$$

where H(z) is holomorphic in D and $H(z) \neq 0$ on \overline{D} . Then

$$\frac{f'(z)}{f(z)} = \frac{H'(z)}{H(z)} + \sum_{i=1}^{n} \frac{1}{z - z_{i}}.$$

Thus,

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\partial D} \frac{H'(z)}{H(z)} dz + \frac{1}{2\pi i} \sum_{j=1}^{n} \int_{\partial D} \frac{1}{z - z_j} dz = 0 + n. \quad \Box$$

EXAMPLE 14 Let p(z) be a polynomial such that $p(z) \neq 0$ when $\text{Re } z \leq 0$. Prove that $p'(z) \neq 0$ when $\text{Re } z \leq 0$.

Proof. Let z_1, \dots, z_n be the zeros of p counting multiplicity. Then

$$p(z) = a_n \prod_{j=1}^{n} (z - z_j)$$

Then

$$\frac{p'(z)}{p(z)} = \sum_{j=1}^{n} \frac{1}{z - z_j}.$$

Since Re $z_i > 0$, if Re $z \leq 0$, then

$$\operatorname{Re} \frac{p'(z)}{p(z)} = \sum_{j=1}^{n} \operatorname{Re} \frac{1}{z - z_{j}} < 0$$

Therefore, $p'(z) \neq 0$ on Re $z \leq 0$.

2.2 The Open Mapping theorem

THEOREM 2.2 (Open Mapping Theorem) Let D be an open set in \mathbb{C} and let f be holomorphic on D. Then f(D) is open.

Proof. It suffices to show that for any $w_0 \in f(D)$, there is an $\epsilon > 0$ such that $D(w_0, \epsilon) \subset f(D)$. Let $z_0 \in D$ such that $f(z_0) = w_0$. Choose $\delta > 0$ such that

$$D(z_0, \delta) \subset D$$
, $f(z) \neq w_0$, for $z \in \partial D(z_0, \delta)$.

Let

$$\epsilon = \frac{1}{2}\min\{|f(z) - w_0| : z \in \partial D(z_0, \delta)\}.$$

For $w \in D(w_0, \epsilon)$, define

$$N(w) = \frac{1}{2\pi i} \int_{\partial D(z_0, \delta)} \frac{f'(z)}{f(z) - w} dz.$$

Then N(w) is well-defined on $D(w_0, \epsilon)$ and is continuous on $D(w_0, \epsilon)$. By the argument principle, N(w) is an integer-valued function. Thus $N(w) \equiv N(w_0) \geq 1$. Therefore, $D(w_0, \epsilon) \subset f(D)$.

2.3 Rouché Theorems

THEOREM 2.3 (Rouché Theorem I) Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let $f,g\in C(\overline{D})$ be two holomorphic functions on D such that

$$|f(z)+g(z)|<|f(z)|+|g(z)|,\quad z\in\partial D.$$

Then $\#(Z_D(f)) = \#Z_D(g)$.

Proof. Notice that

$$\left| \frac{f(z)}{g(z)} + 1 \right| < 1 + \left| \frac{f(z)}{g(z)} \right|, \quad z \in \partial D.$$

Thus $\frac{f(z)}{g(z)} \notin [0, \infty)$ for $z \in \partial D$. Then $h(z) =: \log \frac{f(z)}{g(z)}$, where log is the principle branch, is holomorphic in a neighborhood of ∂D . Then

$$0 = \frac{1}{2\pi i} \int_{\partial D} dh(z)$$

$$= \frac{1}{2\pi i} \int_{\partial D} h'(z)dz$$

$$= \frac{1}{2\pi i} \int_{\partial D} (\log \frac{f(z)}{g(z)})'dz$$

$$= \frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)}dz$$

$$= \#(Z_D(f)) - \#(Z_D(g))$$

where the last equality follows by the argument principle. This implies that $\#(Z_D(f)) = \#(Z_D(g))$.

THEOREM 2.4 (Rouché Theorem II) Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let $f, g \in C(\overline{D})$ be two holomorphic functions on D such that

$$|f(z)| < |g(z)|, \quad z \in \partial D.$$

Then $\#(Z_D(g-f)) = \#Z_D(g)$.

Proof. On ∂D ,

$$|g + (f - g)| = |f| < |g| \le |g| + |f - g|.$$

By Rouché Theorem I,

$$\#(Z_D(g)) = \#(Z_D(f-g)) = \#(Z_D(g-f)).$$

The proof is complete.

2.4 Applications and Examples

EXAMPLE 15 Find the number of zeros of

$$f(z) = z^{10} + 3z + 1$$

on the annulus A(0;1,2).

Solution. Notice that

$$\#(Z_{A(0;1,2)}) = \#(Z_{D(0,2)}) \setminus \#(Z_{\overline{D(0;1)}}).$$

Let $g(z) = -z^{10}$. Then

$$|f(z) + g(z)| = |3z + 1| \le 7 < 2^{10} = |g(z)|, \quad z \in \partial D(0, 2)$$

By the argument principle,

$$\#(Z_{D(0,2)}(f)) = \#(Z_{D(0,2)}(g)) = 10.$$

On the other hand,

$$|g(z)| = 1 < 2 \le |3z + 1|, \quad z \in \partial D(0, 1)$$

Then by the argument principle,

$$\#(Z_{D(0,1)}(3z+1+z^{10})) = \#(Z_{D(0,1)}(3z+1)) = 1.$$

Therefore,

$$\#(Z_{A(0;1,2)}(f)) = 10 - 1 = 9.$$

EXAMPLE 16 Find the number of zeros of

$$f(z) = z^{10} - 10z + 9$$

on the unit disc D(0,1).

Solution. Since f(1) = 0 and

$$f(z) = (z-1)(z^9 + z^8 + \dots + z - 9),$$

when |z| < 1,

$$\left|\sum_{k=1}^{9} z^k - 9\right| > 9 - 9|z| > 0$$

Therefore, $\#(Z_{D(0,1)}(f)) = 0$.

EXAMPLE 17 Find the number of zeros of

$$f(z) = z^2 e^z - z$$

in the disk D(0,2).

Solution. Since

$$f(z) = z^2 e^z - z = z e^z (z - e^{-z}),$$

$$\#(Z_{D(0,2)}(f)) = \#(Z_{D(0,2)}(z-e^{-z})) + 1.$$
 Let

$$g(z) = z - e^{-z}.$$

Then

$$g(z) = x + iy - e^{-x}\cos y + ie^{-x}\sin y = (x - e^{-x}\cos y) + i(y + e^{-x}\sin y)$$

and

$$g(z) = 0 \iff \begin{cases} x - e^{-x} \cos y = 0\\ y + e^{-x} \sin y = 0. \end{cases}$$

Notice that $g(x) = x - e^{-x}$ with g'(x) > 0, g(-2) < 0 and g(2) > 0. Thus, there is only one $x_0 \in (-2, 2)$ such that $g(x_0) = 0$. Notice that since $2 < \pi$,

$$y + e^{-x} \sin y \neq 0$$
 if $y \neq 0$, and $y \in (-2, 2)$.

Therefore,

$$\#(Z_{D(0,2)}(f)) = 1 + 1 = 2.$$

2.5 Hurwitz's Theorem and Applications

THEOREM 2.5 (Hurwitz's Theorem) Let D be domain in \mathbb{C} and let f_n , f be holomorphic in D such that $f_n \to f$ uniformly on any compact subset of D as $n \to \infty$. Then

- a) If $f_n(z) \neq 0$ on D for all n, then either $f(z) \neq 0$ on D or $f(z) \equiv 0$ on D;
- b) If $f(z) \neq 0$ on D then for any compact subset K of D there is an $N = N_K$ such that $f_n(z) \neq 0$ on K when n > N.

Proof.

a) If $f \equiv 0$ on D, then we are done. Assume that $f \not\equiv 0$ on D. If there is a $z_0 \in D$ such that $f(z_0) = 0$, then there is a $\delta > 0$ such that $\overline{D}(z_0, \delta) \subset D$ and $f(z) \not\equiv 0$ on $\overline{D}(z_0, \delta) \setminus \{z_0\}$. Let

$$\epsilon = \min\{|f(z)| : |z - z_0| = \delta\}.$$

Then $\epsilon > 0$. Since $f_n \to f$ uniformly on $\partial D(z_0, \delta)$, there is a N such that if $n \geq N$ then

$$|f(z) - f_n(z)| < \epsilon/2, \quad z \in \partial D(z_0, \delta)$$

By Rouché's theorem,

$$1 \le \#(Z_{D(z_0,\delta)}(f)) = \#(Z_{D(z_0,\delta)}(f - (f - f_n))) = \#(Z_{D(z_0,\delta)}(f_n)) = 0.$$

This is a contradiction.

b) Choose a bounded domain D_1 with smooth boundary such that $K \subset D_1 \subset \overline{D}_1 \subset D$. Let

$$\epsilon = \min\{|f(z)| : z \in \overline{D}_1\} > 0.$$

Since $f_n \to f$ uniformly, there is N such that if $n \ge N$ one has

$$|f_n(z) - f(z)| < \frac{\epsilon}{2}.$$

Then with the same argument as above

$$0 = \#(Z_{D_1}(f)) = \#(Z_{D_1}(f - (f - f_n))) = \#(Z_{D_1}(f_n)).$$

The proof is complete.

2.6 Examples/Applications

EXAMPLE 18 Prove that there is N such that $\sum_{k=0}^{N} \frac{z^k}{k!} \neq 0$ in D(0,3).

Proof. We know

$$\sum_{k=0}^{N} \frac{z^k}{k!} \to e^z$$

uniformly on $\overline{D}(0,3)$ as $N \to \infty$ and $e^z \neq 0$ on \mathbb{C} . Therefore, there is N such that

$$\left| \sum_{k=0}^{N} \frac{z^{k}}{k!} - e^{z} \right| \le \frac{1}{2} \min\{ |e^{z}| : z \in D(0,3) \}, \quad z \in \overline{D}(0,3)$$

Therefore, $\sum_{k=0}^{N} \frac{z^k}{k!}$ has same number of zeros in D(0,3) as the e^z has on D(0,3). Thus

$$\sum_{k=0}^{N} \frac{z^k}{k!} \neq 0, \quad z \in D(0,3). \quad \square$$

EXAMPLE 19 For any compact subset $K \subset D(0,1)$, there is $N = N_K$ such that $\sum_{k=0}^{N} (k+1)z^k \neq 0$ in K.

Proof. There is a 0 < r < 1 such that $K \subset D(0,r)$. We know $\sum_{k=0}^{N} (k+1)z^k \to (1-z)^{-2}$ uniformly on $\overline{D}(0,r)$ as $k \to \infty$. Therefore, there is an $N = N_r$ such that

$$\#(Z_{D(0,r)}(\sum_{k=0}^{N}(k+1)z^{k})) = \#(Z_{D(0,r)}(\frac{1}{(1-z)^{2}})) = 0.$$

2.7 Homework 2

- Zeros of holomorphic functions/ Argument principle and Rouché's theorem.
 - 1. Let P(z) be a polynomial of dregree n. Let $z_0 \in \mathbb{C}$ be any fixed point. Find

$$\lim_{R \to \infty} \int_{|z-z_0|=R} \frac{P'(z)}{P(z)} dz$$

2. Let D be a bounded domain in \mathbb{C} with piecewise C^1 boundary. Let $f(z) \in C(\overline{D})$ be holomorphic in D with all zeros $\{z_1, \dots, z_n\} \subset D$ counting multiplicity. Let g be holomorphic in D and continuous on \overline{D} . Evaluate

$$\int_{\partial D} \frac{f'(z)}{f(z)} g(z) dz$$

- 3. Let P(z) be a holomorphic polynomial of degree at least 1 so that $P(z) \neq 0$ in the upper half plane $\mathbb{R}^2_+ = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$. Prove that $P'(z) \neq 0$ on \mathbb{R}^2_+
- 4. Find the number of zeros of the following given functions in the given regions.

(a)
$$f(z) = z^8 + 5z^7 - 20$$
, $D = D(0, 6)$;

(b)
$$f(z) = z^3 - 3z^2 + 2$$
, $D = D(0, 1)$;

- (c) $f(z) = z^{10} + 10z + 9$, D = (D(0, 1))
- (d) $f(z) = z^{10} + 10ze^{z+1} 9$, D = D(0, 1)
- (e) $f(z) = z^2 e^z z$, D = D(0, 2).
- 5. Let f(z) be holomorphic in D(0,1) so that f'(0) = 0. Prove that f is not one-to-one in $D(0,\delta)$ for any $\delta > 0$.
- 6. Prove that for any 0 < r < 1, there is N = N(r) such that $m \ge N(r)$

$$\sum_{n=0}^{m} z^n \neq 0, \quad z \in D(0, r)$$

7. Let $f: D(0,r) \to \mathbb{C}$ be holomorphic and one-to-one such that f is continuous on $\overline{D(0,r)}$. Prove that

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\partial D(0,r)} \frac{\xi f'(\xi)}{f(\xi) - w} d\xi, \quad w \in f(D(0,r)).$$

and

$$(f^{-1})'(w) = \frac{1}{2\pi i} \int_{\partial D(0,r)} \frac{1}{f(\xi) - f(0)} \left(1 - \frac{w - f(0)}{f(\xi) - f(0)} \right)^{-1} d\xi, \quad w \in f(D(0,r)).$$

- 8. Show that if f is a polynomial of degree ≥ 1 , then the zeros of f'(z) are contained in the closed convex hull of the zeros of f. (The convex hull of Z(f) is the smallest convex set containing Z(f).)
- 9. Suppose that f is holomorphic and has n zeros, counting multiplicities in a domain D. Can you conclude that f' has (n-1) zeros in D? Can you conclude anything about the zeros of f'?
- 10. Let $f: D(0,1) \to D(0,1)$ be holomorphic so that $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$. Prove that

$$|f(z)| \le |z|^n$$
, $z \in D(0,1)$.

Show that if there is a $z_0 \in D(0,1) \setminus \{0\}$ so that $|f(z_0)| = |z_0^n|$ then $f(z) = e^{i\theta} z^n$ for some $\theta \in [0, 2\pi)$.

3 The Geometry of Holomorphic Mappings

3.1 The Maximum Modulus Theorem

As we know, a nonconstant holomorphic function is an open mapping. An application of this fact is the following theorem:

THEOREM 3.1 (Maximum Modulus Theorem) Let D be a domain in \mathbb{C} and f a holomorphic function in D. If there is a $z_0 \in D$ such that

$$|f(z)| \le |f(z_0)|, \quad z \in D,$$
 (3.1)

then f must be a constant.

Proof. Method 1. If $f \not\equiv \text{constant}$ on D, then f is an open map. Hence, f(D) is an open set and $f(z_0)$ is an interior point of f(D). This contradicts (3.1).

Method 2. Let $D(z_0, r) \subset D$. Then

$$f(z_0) = \frac{1}{\pi r^2} \int_{D(z_0,r)} f(z) dA(z).$$

Then

$$|f(z_0)| \le \frac{1}{\pi r^2} \int_{D(z_0,r)} |f(z)| dA(z)$$

and

$$0 \le \frac{1}{\pi r^2} \int_{D(z_0, r)} (|f(z)| - |f(z_0)|) dA(z) \le 0.$$

Since the integrand is continuous and $|f(z)| - |f(z_0)| \le 0$ on $D(z_0, r)$,

$$|f(z)| - |f(z_0)| \equiv 0, \quad z \in D(z_0, r).$$

This implies that

$$4|f'(z)|^2 = \Delta |f(z)|^2 = \Delta |f(z_0)|^2 = 0.$$

So, f is a constant on $D(z_0, r)$. To finish the theorem we can use either of the following two arguments:

• Argument 1: The proof thus far implies that $\{z \in D : f(z) = f(z_0)\}$ is an open and closed set in D. Since D is connected, $f(z) \equiv f(z_0)$ on D.

• Argument 2: For any point $z \in D$, choose finitely many points z_1, \dots, z_n and positive numbers r_1, \dots, r_n such that $z = z_n, r_0 = r$ and

$$z_i \in D(z_{i-1}, r_{i-1}), \quad j = 1, \dots, n.$$

Since $f \equiv f(z_0)$ on $D(z_0, r_0)$ implies that $f(z_1) = f(z_0), |f(z_1)| \ge |f(z)|$ in $D(z_1, r_1)$. By an induction argument, $f(z) = f(z_n) = f(z_0)$.

Corollary 3.2 (Minimum Modulus Theorem) Let D be a domain in \mathbb{C} and f holomorphic in D with $f(z) \neq 0$ on D. If there is a $z_0 \in D$ such that

$$|f(z)| \ge |f(z_0)|, \quad z \in D, \tag{*}$$

then f must be a constant.

Proof. Apply the maximum modulus theorem to 1/f(z).

EXAMPLE 20 Let f be holomorphic in D(0,1) and continuous on $\overline{D}(0,1)$ such that |f(z)| = 1 when |z| = 1. Then f must be rational.

Proof. It is clear that f has only finitely many zeros, say $\{z_1, \dots, z_n\}$ counting multiplicity. Recall that $\phi_{z_j}(z) = \frac{z_j - z}{1 - \bar{z}_j z}$ is a bijective, continuous self-map of $\bar{D}(0,1)$, which is a holomorphic and bijective self-map of D(0,1). Moreover, since $\phi_{z_j}(z)$ is one-to-one and holomorphic on D(0,1), $\phi'_{z_j}(z) \neq 0$ on D(0,1); hence z_j is a simple zero of ϕ_{z_j} . Consider

$$g(z) = \frac{f(z)}{\prod_{i=1}^{n} \phi_{z_i}(z)} \neq 0, \quad z \in D(0, 1),$$

which is holomorphic in D(0,1) and continuous on $\overline{D}(0,1)$. Moreover, |g(z)| = 1 when |z| = 1. By the maximum and minimum modulus theorem, $g \equiv e^{i\theta}$ for some $\theta \in [0, 2\pi)$. Therefore,

$$f(z) = e^{i\theta} \prod_{j=1}^{n} \phi_{z_j}(z)$$

is rational.

3.2 Schwarz Lemma

THEOREM 3.3 (Schwarz Lemma) Let $f: D(0,1) \to D(0,1)$ be holomorphic such that f(0) = 0. Then

- (a) $|f(z)| \le |z|$ for all $z \in D(0,1)$ and equality holds at some point $z_0 \ne 0$ if and only if $f(z) \equiv e^{i\theta}z$;
- (b) $|f'(0)| \le 1$ and |f'(0)| = 1 if and only if $f(z) = e^{i\theta}z$.

Proof.

(a) Let

$$g(z) = \frac{f(z)}{z}.$$

Then g is holomorphic in D(0,1) and

$$|g(z)| = \frac{|f(z)|}{r} \le \frac{1}{r}, \quad |z| = r$$

By the maximum modulus theorem, $|g(z)| \leq \frac{1}{r}$ on D(0,r). Let $r \to 1^-$. Then $|g(z)| \leq 1$ on D(0,1). Therefore, $|f(z)| \leq |z|$ on D(0,1). If |f(z)| = |z| holds at some $z_0 \neq 0$ then |g| has an interior maximum if and only if $g \equiv \text{constant of modulus 1}$; i.e. $g(z) \equiv e^{i\theta}$ for some $\theta \in [0, 2\pi)$.

(b) Since g(0) = f'(0), (b) follows from the maximum modulus theorem.

3.2.1 Schwarz-Pick Lemma

In the Schwarz lemma, we needed to assume that f(0) = 0. What happens if $f(0) \neq 0$?

THEOREM 3.4 (Schwarz-Pick lemma) Let $f: D(0,1) \to D(0,1)$ be holomorphic. Then for any $a \in D(0,1)$, we have

(a)
$$\left| \frac{f(z) - f(a)}{1 - \overline{f}(a)f(z)} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|, \quad z \in D(0, 1)$$

and

(b) $|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |z|^2}, \quad a \in D(0, 1).$

(c) If equality holds at some point in $D(0,1) \setminus \{0,a\}$ in either part (a) or (b), then

$$f(z) = \phi_{f(a)}(e^{i\theta}\phi_a(z))$$

for some $a \in D(0,1)$.

Proof.

(a) We know that

$$\phi_a(z) = \frac{a-z}{1-z\overline{a}}$$

maps $D(0,1) \to D(0,1)$, is one-to-one and onto, and satisfies that $\phi_a(0) = a$, $\phi_a(a) = 0$ and $\phi_a(\phi_a(z)) = z$. Let

$$g(z) = \phi_{f(a)}(f \circ \phi_a(z)).$$

Then $g: D(0,1) \to D(0,1)$ is holomorphic and

$$g(0) = \phi_{f(a)}(f(a)) = 0$$

By the Schwarz lemma, $|g(z)| \leq |z|$. Thus

$$|\phi_{f(a)}(f(z))| \le |\phi_a(z)|, \quad z \in D(0,1).$$

(b) By part (a),

$$\left| \frac{f(z) - f(a)}{z - a} \right| \le \frac{\left| 1 - \overline{f}(a) f(z) \right|}{\left| 1 - \overline{a}z \right|}$$

Let $a \to z$. Then

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}, \quad z \in D(0, 1).$$

If equality holds, then by Schwarz's lemma,

$$\phi_{f(a)}(f(\phi_a(z))) = e^{i\theta}z.$$

Therefore,

$$f(z) = \phi_{f(a)}(e^{i\theta}\phi_a(z)).$$

The proof is complete.

EXAMPLE 21 Find all entire holomorphic functions f such that |f(z)| = 1 when |z| = 1.

Solution. It is clear that f has only finitely many zeros in D(0,1), say $\{z_1, \dots, z_n\}$ counting multiplicity. Then

$$g(z) = \frac{f(z)}{\prod_{j=1}^{n} \phi_{z_j}(z)} \neq 0, \quad z \in D(0,1)$$

is holomorphic in D(0,1) and continuous on $\overline{D}(0,1)$. Moreover, |g(z)|=1 when |z|=1. By the maximum and minimum modulus theorems, $g\equiv e^{i\theta}$ for some $\theta\in[0,2\pi)$. Therefore,

$$f(z) = e^{i\theta} \prod_{j=1}^{n} \phi_{z_j}(z).$$

If $z_j \neq 0$ then f has a pole at $z = 1/\overline{z}_j$. However, f is entire; thus, $z_j = 0$ for all $j = 1, \dots, n$. Therefore,

$$f(z) = e^{i\theta} z^n$$
.

EXAMPLE 22 Let $f: \mathbb{R}^2_+ \to D(0,1)$ be holomorphic. Prove that |f'(i)| < 1 - |f(i)|

Proof. Let $C(z) = i\frac{1-z}{1+z} : D(0,1) \to \mathbb{R}^2_+$ with C(0) = i. We consider

$$g(z)=f\circ C(z):D(0,1)\to D(0,1)$$

Then

$$g'(z) = f'(C(z))C'(z) = f'(C(z))\frac{2i}{(1+z)^2}$$

Therefore,

$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2}$$

Then

$$|f'(i)| = \frac{|g'(0)|}{2} \le \frac{1 - |g(0)|^2}{2} = \frac{1 - |f(i)|^2}{2} < 1 - |f(i)|.$$

3.3 Homework 3

- Maximum Modulus theorem, Schwarz's lemma and holomorphic mapping.
 - 1. Let $f: D(0,1) \to D(0,1)$ be holomorphic so that $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$. Prove that

$$|f(z)| \le |z|^n, \quad z \in D(0,1).$$

Prove that if either there is a $z_0 \in D(0,1) \setminus \{0\}$ so that $|f(z_0)| = |z_0^n|$ or $|f^{(n)}(0)| = n!$, then $f(z) = e^{i\theta}z^n$ for some $\theta \in [0, 2\pi)$.

- 2. Use the Open Mapping Theorem to prove the Maximum Modulus Theorem of holomorphic function: Let f be holomorphic in a domain D so that $|f(z)| \leq |f(z_0)|$ for all $z \in D$ and some fixed $z_0 \in D$. Then f(z) must be constant.
- 3. Let $f_1(z), f_2(z), \dots, f_n(z)$ be holomorphic in a domain D. Suppose there is a $z_0 \in D$ so that

$$\sum_{j=1}^{n} |f_j(z)| \le \sum_{j=1}^{n} |f_j(z_0)|, \quad z \in D.$$

Prove f_1, \dots, f_n are constants on D.

- 4. Construct a conformal holomorphic function $f: D(0,1) \to \mathbb{C} \setminus \{0\}$.
- 5. Let $f(z): \mathbb{R}^2_+ \to \mathbb{R}^2_+$ be holomorphic. Give a statement of Schwarz-Pick type lemma and verify your statement.
- 6. Let $f(z): \overline{D(0,1)} \to \overline{D(0,1)}$ be holomorphic so that |f(z)| = 1 when |z| = 1 and f(0) = f'(0) = f''(0) = 0 but f'''(0) = 3!. Find all such f.
- 7. Let f and g be holomorphic in a domain D and continuous on \overline{D} .
 - (a) Assume that |f(z)| = |g(z)| for all $z \in D$. What is the relation between f and g?
 - (b) Assume that |f(z)| = |g(z)| for $z \in \partial D$ and $|f(z)| \le 10|g(z)|$ on D. What is the relation between f and g?
 - (c) Assume that |f(z)| = |g(z)| for $z \in \partial D$ and $\frac{1}{10}|g(z)| \le |f(z)| \le 10|g(z)|$ on D. What is the relation between f and g?

8. Let $f: D(0,1) \to D(0,1)$ be holomorphic such that f(0) = 0. Let $f^1 = f$, $f^j(z) = f^{j-1}(f(z))$ for $j \geq 2$. Prove that $f^j(z) \to 0$ uniformly on any compact subset K of D(0,1) unless $f(z) = e^{i\theta}z$ for some $\theta \in [0,2\pi)$.

3.4 Conformal and proper holomorphic function maps

Definition 3.5 Let $f(z) = u(z) + iv(z) : D \to \mathbb{C}$ be a C^1 map. We say that f is a conformal map if f is an angle preserving map which means for any $z_0 \in D$ and any two curves $\gamma_j : (-1,1) \to D$ with $\gamma_j(0) = z_0$ we have the angle between $(f \circ r_1)'(0)$ and $(f \circ \gamma_2)'(0)$ (at $f(z_0)$) is the same as the angle between $\gamma_1'(0)$ and $\gamma_2'(0)$ (at z_0).

THEOREM 3.6 Let $f: D \to \mathbb{C}$ be holomorphic and $f'(z) \neq 0$ on D. Then f is a conformal map on D.

Proof. For any $z_0 \in D$, consider any two C^1 curves $\gamma_j : (-1,1) \to D$ with $\gamma_j(0) = z_0$. Then the angle between $\gamma'_1(0) = |\gamma'(0)|e^{i\theta_1}$ and $\gamma'_2(0) = |\gamma'_2(0)|e^{i\theta_2}$ is $\theta_2 - \theta_1$. Notice that

$$\frac{\gamma_2'(0)}{\gamma_1'(0)} = \frac{|\gamma_1'(0)|}{|\gamma_1'(0)|} e^{i(\theta_2 - \theta_1)}$$

and

$$\frac{(f \circ \gamma_2)'(0)}{(f \circ \gamma_2)'(0)} = \frac{f'(z_0)\gamma_2'(0)}{f'(z_0)\gamma_1'(0)} = \frac{\gamma_2'(0)}{\gamma_1'(0)}.$$

This proves the statement.

EXAMPLE 23 $f(z) = e^z : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ is a conformal map since $f'(z) \neq 0$ on \mathbb{C} .

EXAMPLE 24 Find a conformal holomorphic map $f: \mathbb{R}^2_+ \to \mathbb{C} \setminus \{0\}$.

Solution. Let $f(z) = e^{z^3} : \mathbb{R}^2_+ \to \mathbb{C} \setminus \{0\}$. It is easy to verify f is is a conformal map since $f'(z) \neq 0$ on \mathbb{R}^2_+ .

Definition 3.7 Let D_1 and D_2 be two domains in \mathbb{C} . Let $f(z): D_1 \to D_2$ be a continuous map. We say that f is a proper map if $f^{-1}(K)$ is compact in D_1 for any compact subset K of D_2 .

THEOREM 3.8 Let $f: D_1 \to D_2$ be a proper holomorphic. Then $f: \partial D_1 \to \partial D_2$. (Here, if D_i is unbounded, then we consider $\infty \in \partial D_i$.)

Proof. For this proof, consider D_1 and D_2 as subsets of $\mathbb{C} \cup \{\infty\}$ with the topology given by the one-point compactification of \mathbb{C} . With this topology, \bar{D}_1 and \bar{D}_2 are compact subsets of $\mathbb{C} \cup \{\infty\}$.

Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of points in D_1 such that $\lim_{n\to\infty} z_n = z_0 \in \partial D_1$ or $\lim_{n\to\infty} z_n = \infty$. We will show $f(z_n) \to \partial D_2$. If it is not true, then there is a point $w_0 \in D_2$ such that there is a subsequence $\{f(z_{n_k})\}_{k=1}^{\infty}$ such that $f(z_{n_k}) \to w_0$ as $k \to \infty$. Then there is $\epsilon > 0$ such that $D(w_0, 2\epsilon) \subset D_2$. Then $f^{-1}(\overline{D}(w_0, \epsilon))$ is compact set in D_1 . But $\{z_k\}_{k=N}^{\infty} \subset f^{-1}(\overline{D}(w_0, \epsilon))$ for some N. This contradicts with $\{z_{n_k}\}$ converges to boundary of ∂D_1 .

Proposition 3.9 If $f: D(0,1) \to D(0,1)$ is a proper holomorphic map such that $f \in C(\overline{D}(0,1))$, then f is a rational map.

Proof. Since $f: D(0,1) \to D(0,1)$ is proper,

$$\lim_{|z| \to 1} |f(z)| = 1.$$

Since $f \in C(\overline{D}(0,1))$, f has only finitely many zeros in D(0,1), say, z_1, \dots, z_n counting multiplicity. Consider

$$g(z) = \frac{f(z)}{\prod_{j=1}^{n} \phi_{z_j}(z)} \neq 0, \quad z \in D(0, 1),$$

which is holomorphic in D(0,1), continuous on $\overline{D}(0,1)$, and has no zeros in D(0,1). Moreover, |g(z)|=1 when |z|=1. By the maximum and minimum modulus theorems, $g\equiv e^{i\theta}$ for some $\theta\in[0,2\pi)$. Therefore,

$$f(z) = e^{i\theta} \prod_{j=1}^{n} \phi_{z_j}(z).$$

The proof is complete.

Definition 3.10 $f: D_1 \to D_2$ is called a biholomorphism if it is a bijective holomorphic function with holomorphic inverse.

Proposition 3.11 If $f: D_1 \to D_2$ is a biholomorphism then f is proper holomorphic.

Proof. Let K be any compact subset of D_2 . Since f^{-1} is continuous, $f^{-1}(K)$ is compact in D_1 .

3.5 Automorphism groups

Definition 3.12 Let D be a domain in \mathbb{C} . Let $Aut(D) = \{f : D \to D \text{ is biholomorphic}\}$. We define an operation \circ on Aut(D) as follows: For any $f, g \in Aut(D)$, we define $f \circ g(z) = f(g(z))$.

Proposition 3.13 $(Aut(D), \circ)$ forms a group, which is called the automorphism group.

Proof. It is easy to verify.

Question: How does one find Aut(D) explicitly?

EXAMPLE 25 $Aut(D(0,1)) = \{e^{i\theta}\phi_a : a \in D(0,1), \theta \in [0,2\pi)\}$

Proof. Since $f: D(0,1) \to D(0,1)$ is one-to-one and onto, there is $a \in D(0,1)$ such that f(a) = 0. Moreover, since f is one-to-one, its zero is simple. Then

$$g(z) = \frac{f(z)}{\phi_a(z)}$$

is holomorphic in D(0,1), $g(z) \neq 0$ in D(0,1) and |g(z)| = 1 when |z| = 1. By the maximum and minimum modulus theorems, $g(z) = e^{i\theta}$. Thus,

$$f(z) = e^{i\theta}\phi_a(z), \quad z \in D(0,1).$$

The proof is complete.

EXAMPLE 26 Let $Aut(\mathbb{C}) = \{\phi_{a,b} : a, b \in \mathbb{C}, a \neq 0\}$ where $\phi_{a,b}(z) = az + b$.

Proof. It is clear $\phi_{a,b} \in Aut(\mathbb{C})$. On the other hand, if $\phi \in Aut(\mathbb{C})$, then $\phi : \mathbb{C} \to \mathbb{C}$ is proper. Thus, $\lim_{z\to\infty} \phi(z) = +\infty$. Thus ϕ is a polynomial. Since ϕ one-to-one, ϕ is linear and non-constant: $\phi(z) = az + b$ with $a \neq 0$.

EXAMPLE 27 $Aut(\mathbb{C}\setminus\{0\}) = \{\phi_{a,0}(z), \phi_{a,0}(\frac{1}{z}) : a \in \mathbb{C}\setminus\{0\}\}$

Proof. For any biholomorphic map $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$,

$$f:\{0,\infty\}\to\{0,\infty\}$$

So either f(0) = 0 and $f(\infty) = \infty$ or $f(0) = \infty$ and $f(\infty) = 0$. This implies that f(z) = az or $f(\frac{1}{z}) = az$.

EXAMPLE 28 What is $Aut(\mathbb{C} \setminus \{0,1\})$?

Proof. For any biholomorphic map $f: \mathbb{C} \setminus \{0,1\} \to \mathbb{C} \setminus \{0,1\}$,

$$f: \{0, 1, \infty\} \to \{0, 1, \infty\}.$$

Then f must satisfy one of the following six cases:

$$f(0) = 0, f(1) = 1, f(\infty) = \infty, f(0) = 1, f(1) = 0, f(\infty) = \infty;$$

$$f(0) = \infty$$
, $f(\infty) = 0$, $f(1) = 1$; $f(1) = \infty$, $f(\infty) = 1$, $f(0) = 0$;

$$f(0) = \infty, f(\infty) = 1, f(1) = 0;$$
 $f(1) = \infty, f(\infty) = 0, f(0) = 1.$

Since $f \in Aut(\mathbb{C} \setminus \{0,1\})$,

$$f(0) = 0, f(1) = 1, f(\infty) = \infty \iff f(z) = z$$

$$f(0) = 1, f(1) = 0, f(\infty) = \infty \iff f(z) = -z + 1$$

$$f(0) = \infty, \ f(\infty) = 0, f(1) = 1 \iff f(z) = \frac{1}{z}$$

and

$$f(1) = \infty, f(\infty) = 1, f(0) = 0 \iff f(z) = \frac{z}{z - 1}$$

$$f(0) = \infty, f(\infty) = 1, f(1) = 0 \iff f(z) = \frac{z-1}{z}$$

$$f(1) = \infty, f(\infty) = 0, f(0) = 1 \iff f(z) = \frac{1}{1 - z}.$$

Therefore,

$$\operatorname{Aut}(\mathbb{C} \setminus \{0,1\}) = \left\{ z; \ \frac{1}{z}; \ 1-z; \ \frac{1}{z-1}; \ \frac{z}{1-z}, \ \frac{z-1}{z} \right\}$$

EXAMPLE 29 Prove that $Aut(\overline{\mathbb{C}}) = \{\frac{az+b}{cz+d} : ad - bc \neq 0\}.$

Proof.

Case 1. If $f(\infty) = \infty$, then f(z) = az + b with $a \neq 0$.

Case 2. If $f(z_0) = \infty$, let $g(w) = f(z_0 + \frac{1}{w})$ then $g : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is one-to-one and onto and $g(\infty) = \infty$. Thus,

$$q(w) = aw + b.$$

Thus,

$$f(z) = g(\frac{1}{z - z_0}) = \frac{a}{z - z_0} + b = \frac{a + b(z - z_0)}{z - z_0} = \frac{bz + a - bz_0}{z - z_0}$$

and

$$-bz_0 - (a - bz_0) = -a \neq 0. \quad \square$$

EXAMPLE 30 Find $Aut(\mathbb{R}^2_+)$.

Proposition 3.14 Let $f: D_1 \to D_2$ be a biholomorphic map. Then

$$Aut(D_1) = \{ f^{-1} \circ \phi \circ f : \phi \in Aut(D_2) \}$$

Therefore,

$$\operatorname{Aut}(\mathbb{R}^2_+) = C^{-1}\operatorname{Aut}(D(0,1)) \circ C$$

where $C(z) = \frac{z-i}{z+i}$ is the Cayley transform which maps the upper halp plane to the unit disc.

3.6 Möbius transformations

Let

$$Sz = \frac{az+b}{cz+d} = \frac{a(z+b/a)}{c(z+d/c)}$$

Let $S_1z=z+b$, $S_2z=az$ with a>0, $S_3z=e^{i\theta}z$ and $S_4z=\frac{1}{z}$. Then S is a combination of S_1 , S_2 , S_3 and S_4 :

- 1) If $c \neq 0$ and a = 0, then $Sz = \frac{1}{\frac{c}{b}(z+d/c)}$;
- 2) If c = 0 and $a \neq 0$, then Sz = a(z + b/a);
- 3) If $a, c \neq 0$ then

$$Sz = \frac{a}{c} \left(\frac{z+b/a}{z+d/c} \right) = \frac{a}{c} \left(\frac{z+b/a}{z+d/c} \right) = \frac{a}{c} + \frac{b/c - ad/c^2}{z+d/c}$$

Definition 3.15 We say that C is a "circle" in \mathbb{C} if C is a real line or real circle in \mathbb{R}^2 .

THEOREM 3.16 A Möbius transformation S maps "circles" to "circles".

Proof. A real circle can be written as

$$A|z|^2 + B(z + \overline{z}) + Ci(z - \overline{z}) + D = 0$$

where A, B, C, D are real. A straight line can be written as

$$A(z + \overline{z}) + Bi(z - \overline{z}) + C = 0.$$

It is easy to verify that S_1, S_2 and S_3 map "circles" to "circles". Let $w = S_4 z = \frac{1}{z}$. Now we verify that S_4 maps "circles" to "circles". Notice that

$$\begin{split} A|z|^2 + B(z + \overline{z}) + Ci(z - \overline{z}) + D &= 0 \\ \iff A \frac{1}{|w|^2} + B \frac{(w + \overline{w})}{|w|^2} + Ci \frac{(\overline{w} - w)}{|w|^2} + D &= 0 \\ \iff A + B(w + \overline{w}) + Ci(\overline{w} - w) + D|w|^2 &= 0. \end{split}$$

This is a "circle".

3.7 Cross ratio

We know

- Two points in \mathbb{C} uniquely determine a line, and a line fixes ∞ .
- A circle is uniquely determined by three points.

Question. How does one find a Möbius transformation S that maps a given "circle" to another given "circle"? Equivalently, how does one find a Möbius transformation that maps three given points in $\overline{\mathbb{C}}$ to another three given points in $\overline{\mathbb{C}}$?

To answer the above question, start with three points $\{z_1, z_2, z_3\}$ and another three points $\{w_1, w_2, w_3\}$. First, find Möbius transformations S_{z_1, z_2, z_3}

and S_{w_1,w_2,w_3} that map $\{z_1,z_2,z_3\}$ and $\{w_1,w_2,w_3\}$ to $\{0,\infty,1\}$ respectively. Then

$$S = (S_{w_1, w_2, w_3})^{-1} S_{z_1, z_2, z_3}$$

maps $\{z_1, z_2, z_3\}$ to $\{w_1, w_2, w_3\}$. We construct S_{z_1, z_2, z_3} as follows:

$$S_{z_1,z_2,z_3}(z) = \frac{z-z_1}{z-z_2} \frac{z_3-z_2}{z_1-z_2} =: (z; z_1, z_2, z_3).$$

 $(z; z_1, z_2, z_3)$ is also called the cross ratio.

THEOREM 3.17 Möbius transformations preserve the cross ratio, i.e. $(Sz; Sz_1, Sz_2, Sz_3) = (z; z_1, z_2, z_3)$.

Proof. It is obvious that

$$(S_j z; S_j z_1, S_j z_2, S_j z_3) = (z; z_1, z_2, z_3), \quad 1 \le j \le 3.$$

and

$$(S_4z; S_4z_1, S_4z_2, S_4z_3) = \frac{zz_2}{zz_1} \frac{z_1z_3}{z_2z_3} (z; z_1, z_2, z_3) = (z; z_1, z_2, z_3). \quad \Box$$

3.8 Properties of the Cross Ratio

3.8.1 Symmetric points

- 1. We know that z and \overline{z} are symmetric with respect to the real line.
- 2. Let L be a line. Two points z and z^* are said to be symmetric with respect to L if $[z, z^*] \perp L$ and $\operatorname{dist}(z, L) = \operatorname{dist}(z^*, L)$.
- 3. Let $C = \{z \in \mathbb{C} : |z z_0| = R\}$ be a circle. Two points z and z^* are said to be symmetric with respect to C if

(i)
$$\frac{z^* - z_0}{z - z_0} > 0$$
 and (ii) $|z - z_0||z^* - z_0| = R^2$.

Lemma 3.18 If z and z^* are symmetric with respect to the circle $|z - z_0| = R$, then

$$z^* = z_0 + \frac{R^2}{\overline{z} - \overline{z}_0}.$$

Proof. Notice that

$$\frac{z^* - z_0}{z - z_0} = \frac{|z^* - z_0|}{|z - z_0|} = \frac{R^2}{|z - z_0|^2}.$$

Therefore

$$z^* = z_0 + \frac{R^2}{\overline{z} - \overline{z}_0}. \quad \square$$

In particular, notice that if $z_1, z_2, z_3 \in \mathbb{R}$ and $z^* = \overline{z}$, then

$$(z^*; z_1, z_2, z_3) = (\overline{z}; z_1, z_2, z_3) = \overline{(z; z_1, z_2, z_3)}$$

Proposition 3.19 Let C be the circle centered at z_0 with radius R. Let $z_1, z_2, z_3 \in C$ and z and z^* are symmetric with respect to C. Then

$$(z^*; z_1, z_2, z_3) = \overline{(z; z_1, z_2, z_3)}$$

Proof. This follows from

$$(z^*; z_1, z_2, z_3) = (z_0 + \frac{R^2}{\overline{z} - \overline{z_0}}; z_1, z_2, z_3)$$

$$= (\frac{R^2}{\overline{z} - \overline{z_0}}; z_1 - z_0, z_2 - z_0, z_3 - z_0)$$

$$= (\frac{R^2}{\overline{z} - \overline{z_0}}; \frac{R^2}{\overline{z_1} - \overline{z_0}}, \frac{R^2}{\overline{z_2} - \overline{z_0}}, \frac{R^2}{\overline{z_3} - \overline{z_0}})$$

$$= (\overline{z} - \overline{z_0}; \overline{z_1} - \overline{z_0}, \overline{z_2} - \overline{z_0}, \overline{z_3} - \overline{z_0})$$

$$= (\overline{z} - z_0; z_1 - z_0, z_2 - z_0, z_3 - z_0)$$

$$= (\overline{z}; z_1, z_2, z_3). \quad \square$$

THEOREM 3.20 Möbius transformations preserve symmetry; that is, if z and z^* are symmetric with respect to a "circle" C then Sz and Sz^* are symmetric with respect to S(C).

Proof. Since

$$(Sz^*; Sz_1, Sz_2, Sz_3) = (z^*; z_1, z_2, z_3) = \overline{(z; z_1, z_2, z_3)}$$

and

$$((Sz)^*, Sz_1, Sz_2, Sz_3) = \overline{(Sz; Sz_1, Sz_2, Sz_3)} = \overline{(z; z_1, z_2, z_3)}$$

Therefore, $Sz^* = (Sz)^*$. \square

EXAMPLE 31 Find a conformal map which maps the upper half plane to the unit disc.

Solution. Let

$$Sz = \frac{z - i}{z + i}.$$

This map is called the Cayley transform. Since S is a Möbius transformation with

$$S0 = -1, S1 = -i, S\infty = 1 \in \{|z| = 1\},\$$

S maps the real line to the unit circle. Since additionally Si = 0 and $S \in Aut(\bar{\mathbb{C}})$, S maps the upper half plane to the unit disc biholomorphically (hence conformally).

3.9 Construction of conformal maps

Suppose two "circles" C_1 and C_2 intersect at exactly two points z_1 and z_2 . Let D be the region bounded by C_1 and C_2 and γ_1 , γ_2 be the arcs from z_1 to z_2 on the circles C_1, C_2 respectively. We want to construct a conformal map S which maps D onto the unit disc. Let the angle between the two circles at z_1 be θ . Consider the map

$$f_1(z) = \frac{z - z_1}{z - z_2}$$

which sends z_1 to 0 and z_2 to ∞ . Since f_1 is a Möbius transformation, $f_1(\gamma_1)$ and $f_1(\gamma_2)$ are rays emanating from the origin. Without loss of generality, suppose the angle between $f(\gamma_1)$ and $[0, \infty)$ measured counter-clockwise from the positive real axis is less than the angle between $f(\gamma_2)$ and $[0, \infty)$ measured counter-clockwise from the positive real axis. Suppose θ_1 be the angle between $f(\gamma_1)$ and $[0, \infty)$. Then we let

$$f_2(z) = e^{-i\theta_1}z$$

and

$$f_3(z) = (z)^{\pi/\theta}$$

Then $f_3 \circ f_2 \circ f_1$ maps the region D to the upper half plane. Then the Cayley transform takes it to the unit disc. (See Figure - Conformal Map 1)

EXAMPLE 32 Find a conformal map f which map upper half disc to the unit disc. (See figure - Upper half disc to unit disc)

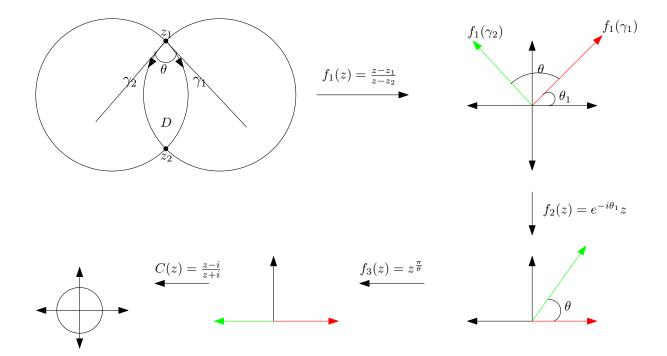


Figure 5: Conformal Map 1

Solution. Let

$$z_1 = f_1(z) = \frac{z+1}{z-1},$$

which maps the upper half disc to the first quadrant of the plane. Let

$$z_2 = f_2(z) = z_1^2,$$

which maps the first quadrant to the upper half plane. Let

$$z_3 = f_3(z) = \frac{z - i}{z + i}$$

maps the upper half plane to the unit disc. Compose the functions.

EXAMPLE 33 Find a conformal map f which maps the region D between the two circles |z+1|=1 and |z+1/2|=1/2 to the unit disc. (See figure - Region between two circles to unit disc)

Solution. Let $z_1 = \frac{1}{z}$ which maps D to the region D_1 between the two lines x = -1 and x = -1/2. Let $z_2 = i(z_1 + 1)2\pi$, which maps D_1 to the region

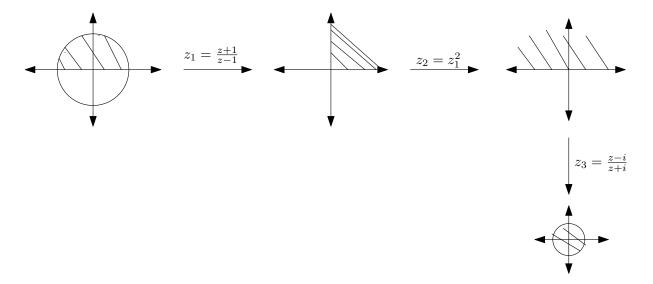


Figure 6: Upper half disc to unit disc

 $D_2 = \{z = x + iy : 0 < y < \pi\}$. Let $z_3 = e^{z_2}$, which maps D_2 to the upper half plane. Let $z_4 = \frac{z_3 - i}{z_3 + i}$, which maps the upper half plane to the unit disc.

EXAMPLE 34 Find a conformal map f which maps the region $D = \{z \in \mathbb{C} : |z| < 1, y > -\frac{\sqrt{2}}{2}\}$ to the unit disc. (See figure - conformal map 4)

Solution. Let $p = \frac{\sqrt{2}}{2}(1-i)$ and $q = \frac{\sqrt{2}}{2}(1+i)$. The angle θ between the circle |z| = 1 and the line $y = -\frac{\sqrt{2}}{2}$ is

$$\theta = \pi - \arg(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = \pi - \arg(1+i) = \frac{3\pi}{4}$$

Set

$$z_1 = \frac{z - \frac{\sqrt{2}}{2}(1-i)}{z + \frac{\sqrt{2}}{2}(1+i)}$$

Then

$$z_1(p) = 0, \quad z_1(-i\frac{\sqrt{2}}{2}) = \frac{-\sqrt{2}}{\sqrt{2}} = -1$$

and z_1 maps D to $D_1 = \{z \in \mathbb{C} : z = |z|e^{i\theta}, \frac{\pi}{4} < \theta < \pi\}$. Let

$$z_2 = e^{-\pi/4i} z_1.$$

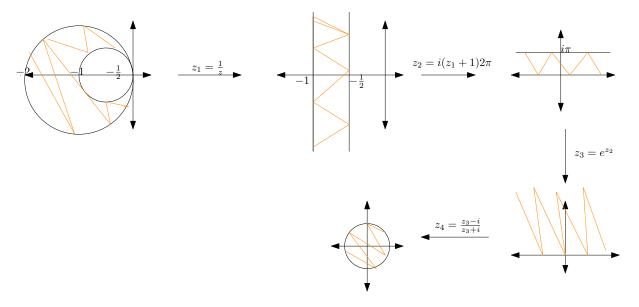


Figure 7: Region between two circles to unit disc

Then
$$z_2$$
 maps D_1 to $D_2=\{z\in\mathbb{C}:z=|z|e^{i\theta},0<\theta<\frac{3\pi}{4}\}.$ Let
$$z_3=z_2^{4/3}$$

Then z_3 maps D_2 to the upper half plane. Use the Cayley transform to map the upper half plane to the unit disc.

3.10 Homework 4

- Maximum Modulus theorem and holomorphic mappings.
 - 1. Prove or disprove that there is a sequence of holomorphic polynomials $\{p_n\}_{n=1}^{\infty}$ that converges to $\frac{1}{z}$ uniformly on the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.
 - 2. Let f(z) be meromorphic on $\mathbb C$ so that $|f(z)| = |\sin z|$ when |z| = 1. Find all such f.
 - 3. Let f(z) be entire and 1-1. Show that f must be linear.
 - 4. Let D be a domain in \mathbb{C} . We say that Aut(D) is compact if for every sequence $\{f_n\}_{n=1}^{\infty}$ in Aut(D), there is a subsequence $\{f_{n_k}\}$ and an $f \in$

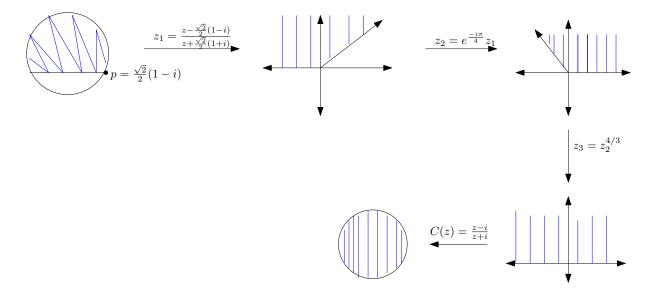


Figure 8: conformal map 4

Aut(D) so that f_{n_k} converges to f uniformly on any compact subset of D. Give an example of a domain D where Aut(D) is not compact.

- 5. Find Aut(D) where $D = \mathbb{C} \setminus \{|z| \le 1\} = \{z \in \mathbb{C} : |z| > 1\}.$
- 6. Let Ω be a domain in \mathbb{C} . Let $\phi: \Omega \to D(0,1)$ be a biholomorphic mapping and $\psi: D(0,1) \to \Omega$ be a biholomorphic map. How are ϕ and ψ related?
- 7. Find all proper holomorphic maps from the whole plane \mathbb{C} to itself.
- 8. Let D be a bounded domain and let ϕ be a conformal mapping of D to itself. Let $z_0 \in D$ so that $\phi(z_0) = z_0$ and $\phi'(z_0) = 1$. Prove that $\phi(z) = z$ for all $z \in D$.
- 9. Find all proper holomorphic mapping from $\mathbb{C} \setminus \{0\}$ to itself.
- 10. Construct a conformal map (i.e. $f'(z) \neq 0$) ϕ which maps

$$\left\{z \in \mathbb{C} : |z| < 1, \operatorname{Im} z > -\frac{1}{\sqrt{2}}\right\}$$

to the unit disc.

- 11. Let T be a Möbius transformation. Let C be a circle in $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Let $z \in \mathbb{C}$ and z^* be the symmetric point of z with respect to C. Prove that $T(z^*)$ is the symmetric point of Tz with respect to T(C).
- 12. Construct a linear fractional transformation that sends the unit disc to the half plane that lies below the line x + 2y = 4.
- 13. Find a conformal map which maps the strip between the two lines x + y = 1 and x + y = 4 to the unit disc.
- 14. Find a conformal map which maps $\mathbb{C} \setminus [1, \infty)$ to the unit disc.

3.11 Midterm Review

There will be five problems on the test. The material on the test includes the following:

- 1) Application of Residues theorem: Evaluate some real integrals
 - I. $\int_0^{2\pi} R(\cos\theta, \sin\theta)d\theta$ where R(x, y) are rational function of x and y. Ex:

$$\int_0^{2\pi} \frac{1}{a + \cos x} dx$$

- II. $\int_0^\infty \frac{P(x)}{Q(x)} dx$ with $\deg(Q) \ge \deg(P) + 2$ and $Q(x) \ne 0$ on $[0, \infty)$.
- III. $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{-ix} dx \text{ with } \deg(Q) \ge \deg(P) + 1.$ In particular,

$$\int_0^\infty \frac{\sin x}{x} dx, \quad \int_0^\infty \frac{1 - \cos x}{x^2} dx$$

IV.
$$\int_0^\infty \frac{1}{1+x^3} dx$$

V.
$$\int_0^\infty \frac{P(x)}{Q(x)} x^\alpha dx$$
 with $\deg(Q) \ge \deg(P) + \alpha + 2$.

VI.
$$\int_0^\infty \frac{P(x)}{Q(x)} \ln x dx$$
 with $\deg(Q) \ge \deg(P) + 2$ and $Q(x) \ne 0$ on $[0, \infty)$.

2) Argument Principle and Applications.

I. Open mapping theorem

$$\#(Z_D(f)) = \frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z) - w} dz, \quad f(z) \neq w, \quad z \in \partial D.$$

If $f(z) = h(z) \prod_{j=1}^{n} (z - z_j)$ then

$$\frac{f'(z)}{f(z)} = \frac{h'(z)}{h(z)} + \sum_{j=1}^{n} \frac{1}{z - z_j}$$

- II. **Example:** if f is a polynomial of deg ≥ 1 . If $f(z) \neq 0$ on Imz > 1 then $f'(z) \neq 0$ when Imz > 1.
- 3) Rouché's Theorem, Hurwitz's Theorem and their applications.

Example: Find $\#Z_{A(0;1,2)}(z^{10}-2z^5+10);$

Example: Prove that there is N such that $n \geq N \sum_{k=0}^{N} z^k \neq 0$ on D(0, 3/4).

4) Maximum Modulus Theorem/Minimum Modulus Theorem

Example: Let f_1, \dots, f_n be holomorphic in a domain D in \mathbb{C} . Suppose that there is a point $z_0 \in D$ such that

$$\sum_{j=1}^{n} |f(z)| \le \sum_{j=1}^{n} |f_j(z_0)|, \quad z \in D$$

Prove that f_j must be a constant for all $1 \leq j \leq n$.

Example: Find all entire holomorphic functions such that |f(z)| = 2 when |z| = 1.

5) Schwarz lemma and Schwarz-Pick lemma

Example: If $f: D(0,1) \to D(0,1)$ such that $f(0) = f'(0) = \cdots = f^{(n)}(0) = 0$. Prove that $|f(z)| \le |z|^{n+1}$ on D.

6) Proper, biholomorphic maps

- 7) Automorphism group Aut(D)
- 8) Möbius transformations
- 9) Conformal mappings.

3.12 Normal families

THEOREM 3.21 Let D be a simply connected domain in \mathbb{C} such that $D \neq \mathbb{C}$. Then for any point $z_0 \in D$ there is a unique biholomorphic map $f: D \to D(0,1)$ such that (i) $f(z_0) = 0$ and (ii) $f'(z_0) > 0$.

Proof. First we prove that if such a map exists, then it is unique. Suppose that there are two biholomorphic maps $f_1, f_2 : D \to D(0,1)$ such that $f_j(z_0) = 0$ and $f'_j(z_0) > 0$. We will show that $f_1 = f_2$. Then $g = f_2 \circ f_1^{-1} : D(0,1) \to D(0,1)$ is a biholomorphic map with g(0) = 0. Moreover,

$$g'(0) = \frac{f_2(z_0)}{f_1(z_0)} > 0$$

Similarly, $g^{-1}=f_1\circ f_2^{-1}$ also satisfies $g^{-1}(0)=0$ and

$$(g^{-1})'(0) = \frac{f_1(z_0)}{f_2(z_0)} > 0.$$

Thus, g'(0) = 1 and by the Schwarz lemma, $g(z) \equiv z$. Therefore, $f_1(z) = f_2(z)$ on D.

In order to prove the existence portion of the proof, we need the theory of normal families $\ \square$.

Definition 3.22 A family \mathcal{F} of holomorphic functions on a domain D is said to be a normal family if for any sequence $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$ there is a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ and a holomorphic function f on D such that

$$f_{n_k} \to f$$

uniformly on any compact subset of D. In this case, we say that f_{n_k} converges to f normally in D as $k \to \infty$.

EXAMPLE 35 $\mathcal{F} = \{f_n(z) =: nz : n \in N\}$ is not a normal family on D(0,1).

Proof. Note that $f_n(0) = 0$ for any $n \in N$ and $f_n(\frac{1}{2}) = n/2 \to \infty$ as $n \to \infty$.

Definition 3.23 Let \mathcal{F} be a family of continuous functions on a domain D. We say that

(i) \mathcal{F} is locally bounded if for any compact subset K of D there is a constant $C_K > 0$ such that

$$|f(z)| \le C_K, \quad z \in K, f \in \mathcal{F}$$

(ii) \mathcal{F} is bounded pointwise if for each point $z \in D$ there is a constant C_z such that

$$|f(z)| \le C_z, \quad f \in \mathcal{F}$$

(iii) \mathcal{F} is equicontinuous on D if for any $\epsilon > 0$ there is a $\delta > 0$ such that if $z_1, z_2 \in D$ and $|z_1 - z_2| < \delta$ then $|f(z_1) - f(z_2)| < \epsilon$ for any $f \in \mathcal{F}$.

THEOREM 3.24 (Arzela-Ascoli Theorem) Let \mathcal{F} be a family of continuous functions on a compact set K. Then \mathcal{F} is a normal family on K if and only if \mathcal{F} is both bounded and equicontinuous on K.

THEOREM 3.25 (Montel's Theorem) Let \mathcal{F} be a family of holomorphic functions on a domain D. Then \mathcal{F} is a normal family on D if and only if \mathcal{F} is locally bounded on D.

Proof. If \mathcal{F} is a normal family, then by the Arzela-Ascoli theorem, one has that \mathcal{F} is locally bounded. Conversely, assume that \mathcal{F} is locally bounded on D; we will show that \mathcal{F} is a normal family. Let $\{D_n^1\}_{n=1}^{\infty}$ and $\{D_n\}_{n=1}^{\infty}$ be two sequence of domains in D such that

- 1. $\overline{D}_n^1 \subset D_n$, D_n bounded and $D_n^1 \to D$ increasingly as $n \to \infty$
- 2. $\partial D_n \subset D$ is piecewise C^1 .
- 3. Let M_n be the constant such that

$$|f(z)| \le M_n, \quad z \in \overline{D}_n, f \in \mathcal{F}.$$

For any $f \in \mathcal{F}$ and $z_1, z_2 \in D_n^1$,

$$|f(z_1) - f(z_2)| = \left| \frac{1}{2\pi i} \int_{\partial D_n} \frac{f(w)}{(w - z_1)(w - z_2)} (z_2 - z_1) dw \right|$$

$$\leq \frac{M_n \cdot length(\partial D_n)}{2\pi d(\partial D_n^1, \partial D_n)^2} |z_2 - z_1|$$

It is clear that \mathcal{F} is equicontinuous on \overline{D}_n^1 , $n=1,2,3,\cdots$.

Since \mathcal{F} is bounded on \overline{D}_n^1 , by Arzela-Ascoli, for any sequence $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$ there is a subsequence $\{f_{1,n}\}_{n=1}^{\infty}$ which converges uniformly on \overline{D}_1^1 and for each k, there is a subsequence $\{f_{k,n}\}_{n=1}^{\infty}$ of $\{f_{k-1,n}\}_{n=1}^{\infty}$ which converges uniformly on \overline{D}_k^1 . Let $\{g_n\}_{n=1}^{\infty} = \{f_{n,n}\}_{n=1}^{\infty}$. Then for all k, $\{g_n\}_{n=1}^{\infty}$ converges uniformly on \overline{D}_k^1 to a holomorphic function g_k . Let

$$f(z) = g_k(z), \quad z \in D_k^1$$

Since D_k^1 is increasing, by the uniqueness theorem, f is well-defined and holomorphic in D. Since any compact subset K of D is a subset of some \overline{D}_k^1 , the subsequence $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f on any compact subset K of D as desired. \square

3.12.1 Examples for normal families

The Bergman space $A^2(D)$ consists of all holomorphic functions on D such that

$$||f||_{A^2}^2 = \int_{D(0,1)} |f(z)|^2 dA(z)$$

EXAMPLE 36 The unit ball in the Bergman space $A^2(D(0,1))$ is a normal family.

Proof. For any $f \in A^2(D(0,1))$,

$$|f(z)| \le \frac{||f||_{A^2}}{\sqrt{\pi}d(z,\partial D)}, \quad z \in D$$

Therefore, the unit ball \mathcal{F} of $A^2(D)$ is locally bounded on D. By Montel's theorem, \mathcal{F} is a normal family. \square

The Hardy space $H^2(D)$ on the unit disc D(0,1) consists of all holomorphic functions f on D(0,1) such that

$$||f||_{H^2} = \sup_{0 < r < 1} \left(\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{1/2} < \infty.$$

EXAMPLE 37 The unit ball in the Hardy space $H^2(D(0,1))$ is a normal family.

Proof. For any $f \in H^2(D(0,1))$, by the Cauchy integral formula, we have

$$|f(z)^2| = \lim_{r \to 1^-} \Big| \frac{1}{2\pi i} \int_{\partial D(0,r)} \frac{f(w)^2}{w - z} dw \Big| \le \frac{1}{2\pi} \lim_{r \to 1^-} \int_0^{2\pi} \frac{|f(re^{i\theta})|^2}{r - |z|} r d\theta \le \frac{\|f\|_{H^2}^2}{2\pi (1 - |z|)}.$$

Thus,

$$|f(z)| \le \frac{||f||_{H^2}}{\sqrt{2\pi}(1-|z|)^{1/2}}, \quad z \in D$$

Therefore, the unit ball \mathcal{F} of $H^2(D)$ is locally bounded on D. By Montel's theorem, \mathcal{F} is a normal family. \square

The Dirichlet space $\mathcal{D}(D(0,1))$ consists of all holomorphic functions on D(0,1) such that

$$||f||_{\mathcal{D}}^2 = \int_{D(0,1)} |f'(z)|^2 dA(z) < \infty.$$

EXAMPLE 38 The unit ball in the Dirichlet space $\mathcal{D}(D(0,1))$ is a normal family.

The Bloch space $\overline{B}(D) =: \{f : f \text{ is holomorphic in } D, ||f||_{\mathcal{B}} < \infty \}$, where

$$||f||_{\mathcal{B}} = |f(0)| + \sup\{|f'(z)| \operatorname{dist}(z, \partial D) : z \in D\}$$

EXAMPLE 39 The unit ball in the Bloch space $\mathcal{B}(D(0,1))$ is a normal family.

3.13 The Riemann Mapping Theorem

THEOREM 3.26 (Riemann Mapping Theorem) Let D be a simply connected domain in \mathbb{C} such that $D \neq \mathbb{C}$. Then for any point $z_0 \in D$ there is a unique biholomorphic map $f: D \to D(0,1)$ such that (i) $f(z_0) = 0$ and (ii) $f'(z_0) > 0$.

The uniqueness portion was shown in Theorem 3.21. We need the next several lemmas to prove the existence portion.

Remark: The map given in the Riemann Mapping Theorem is often called the Riemann map.

3.13.1 Existence of the Riemann map

Lemma 3.27 Let D be a simply connected domain in \mathbb{C} and $w \in \mathbb{C} \setminus D$. Then there is a one-to-one holomorphic function h on D such that

(i)
$$h(z)^2 = z - w, z \in D$$

(ii) if
$$b \in h(D) \setminus \{0\}$$
 then $-b \notin \overline{h(D)}$.

Proof. Since $z - w \neq 0$ on D and D is simply connected, there is a holomorphic function h on D such that $h(z)^2 = z - w$.

Let $b \in h(D)$. It is clear that $b \neq 0$. We claim that $-b \notin h(D)$. Otherwise, there are $z_1 \in D$ and $z_2 \in \overline{D}$ such that $h(z_1) = b$ and $h(z_2) = -b$. Thus,

$$b^2 = h(z_1)^2 = z_1 - w$$
, $b^2 = (-b)^2 = h(z_2)^2 = z_2 - w$.

Thus, $z_1 = z_2$, and b = -b. This is a contradicts that $b \neq 0$. We now claim that $-b \notin \overline{h(D)}$. By the open mapping theorem, for sufficiently small δ ,

$$D(b,\delta) \subset h(D) \setminus \{0\}.$$

Our proof thus far show that $D(-b,\delta) \cap h(D) = \emptyset$. Thus, $-b \notin \overline{h(D)}$.

Lemma 3.28 Let D be a simply connected domain in \mathbb{C} and $D \neq \mathbb{C}$. Then for any $z_0 \in D$, there is a one-to-one holomorphic function $f: D \to D(0,1)$ such that

1.
$$f(z_0) = 0$$
;

2.
$$f'(z_0) > 0$$

Proof. Let $w \in \mathbb{C} \setminus D$. Then there is a one-to-one holomorphic function h on D such that $h(z)^2 = z - w$ on D. Choose $b \in h(D) \setminus \{0\}$. Then $-b \notin \overline{h(D)}$. Let

$$r = \operatorname{dist}(-b, \overline{h(D)}) > 0$$

and

$$f(z) =: \frac{re^{i\theta}}{2} \left(\frac{1}{h(z) + b} - \frac{1}{h(z_0) + b} \right).$$

where θ is to be determined. Then f(z) is holomorphic on D, it is clearly one-to-one and $f(z_0) = 0$. $f(D) \subset D(0,1)$ because

$$|f(z)| < \frac{r}{2}(\frac{1}{r} + \frac{1}{r}) = 1.$$

Since $h^2 = z - w$,

$$h'(z_0) = \frac{1}{2h(z_0)};$$

hence,

$$f'(z_0) = \frac{re^{i\theta}}{2} \left(\frac{-h'(z_0)}{(h(z_0) + b)^2} \right) = \frac{re^{i\theta}}{2} \left(\frac{-1}{2h(z_0)(h(z_0) + b)^2} \right),$$

which can be made positive by choosing θ appropriately.

Let $\mathcal{F}(D; z_0)$ be the set of all one-to-one holomorphic functions from D to D(0,1) such that $f(z_0)=0$ and $f'(z_0)>0$.

Lemma 3.29 Let D be a simply connected domain in \mathbb{C} with $D \neq \mathbb{C}$. Let $z_0 \in D$ and $f \in \mathcal{F}(D; z_0)$. If $f : D \to D(0, 1)$ is not onto, then there is a $g \in \mathcal{F}(D; z_0)$ such that $g'(z_0) > f'(z_0)$.

Proof. Let $w \notin D(0,1) \setminus f(D)$ and let

$$\psi(z) = \frac{f(z) - w}{1 - \overline{w}f(z)} \neq 0.$$

Then $\psi: D \to D(0,1) \setminus \{0\}$ is one-to-one, holomorphic, and

$$\psi(z_0) = -w, \quad \psi'(z_0) = f'(z_0) + \overline{w}f'(z_0)(-w) = f'(z_0)(1 - |w|^2).$$

Since D is simply connected, there is a one-to-one holomorphic function h on D such that $h(z)^2 = \psi(z)$ on D. Let

$$g(z) = \frac{h(z_0)}{|h(z_0)|} \frac{h(z) - h(z_0)}{1 - \overline{h(z_0)}h(z)} : D \to D(0, 1)$$

Then g is one-to-one, holomorphic and $g(z_0) = 0$. We will prove that $g'(z_0) > f(z_0)$. Notice that $|h(z_0)| = \sqrt{|w|}$ and

$$g'(z_0) = \frac{h(z_0)}{|h(z_0)|} \frac{h'(z_0)(1 - |h(z_0)|^2)}{(1 - \overline{h(z_0)}h(z_0))^2}$$

$$= \frac{h(z_0)}{|h(z_0)|} \frac{\psi'(z_0)}{2h(z_0)(1 - |\psi(z_0)|)}$$

$$= \frac{1}{|h(z_0)|} \frac{f'(z_0)(1 - |w|^2)}{2(1 - |\psi(z_0)|)}$$

$$= \frac{1}{\sqrt{|w|}} \frac{f'(z_0)(1 - |w|^2)}{2(1 - |w|)}$$

$$= \frac{f'(z_0)(1 + |w|)}{2\sqrt{|w|}}$$

$$> f'(z_0).$$

The proof is complete.

3.13.2 Proof of Riemann mapping theorem

Proof. Let $\mathcal{F}(D; z_0)$ be the set of all one-to-one holomorphic functions from D to D(0,1) such that $f(z_0) = 0$ and $f'(z_0) > 0$. Since D is simply connected and $D \neq \mathbb{C}$, by lemma 3.28, $\mathcal{F}(D; z_0) \neq \emptyset$. Let

$$R_{D:z_0} := R = \sup\{f'(z_0) : f \in \mathcal{F}(D; z_0)\}$$

We claim that there is $F \in \mathcal{F}(D; z_0)$ such that $F'(z_0) = R$. By the last lemma, F is the Riemann map.

Choose $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}(D; z_0)$ such that

$$R_{D;z_0} = \lim_{n \to \infty} f'_n(z_0)$$

Since $\{f_n\}_{n=1}^{\infty}$ is a bounded sequence on D, by Montel's theorem, there is a subsequence $\{f_{n_k}\}$ and a holomorphic function f on D such that $f_{n_k} \to f$

uniformly on any compact subset of D. We claim that $f \in \mathcal{F}(D; z_0)$. It is clear that

$$f(z_0) = 0, \quad f'(z_0) = R$$

and $|f(z)| \leq 1$ on D. By the maximum modulus theorem, |f(z)| < 1 on D and f is one-to-one on D by Hurwitz's Theorem. Therefore, $f \in \mathcal{F}(D; z_0)$. By the previous lemma and definition of R, we have $f: D \to D(0, 1)$ is onto and therefore the Riemann map. \square

We will call $R_{D;z_0}$ is the radius of Riemann map from D to D(0,1) at z_0 .

EXAMPLE 40
$$R_{D(0,1);z_0} = \frac{1}{1-|z_0|^2}$$

Proof. The Riemann map from $D(0,1) \to D(0,1)$ with $f(z_0) = 0$ and $f'(z_0) > 0$ is

$$f(z) = \frac{z - z_0}{1 - \overline{z}_0 z}$$

and

$$R_{D(0,1);z_0} = f'(z_0) = \frac{1}{1 - |z_0|^2}$$

The proof is complete.

3.14 Homework 5

- Conformal holomorphic mappings and normal family.
 - 1. Find a conformal map which maps D(0,1) onto $D(0,1) \setminus \{0\}$.
 - 2. (Hard) Find a conformal map which maps $D(0,1) \setminus \{0\}$ onto D(0,1).
 - 3. Let \mathcal{F} be a family of holomorphic functions on the unit disc such that for any $f \in \mathcal{F}$,

$$\int_{0}^{2\pi} |f(re^{i\theta})| d\theta \le 1, \text{ for all } 0 < r < 1.$$

Prove that \mathcal{F} is a normal family.

4. Let \mathcal{F} be a family of holomorphic functions on the unit disc such that for any $f \in \mathcal{F}$,

$$|f(0)|^2 + \int_{D(0,1)} |f'(z)|^2 dA(z) \le 1.$$

Prove that \mathcal{F} is a normal family.

5. Let \mathcal{F} be a family of holomorphic functions on the unit disc such that for any $f \in \mathcal{F}$,

$$|f(0)| + (1 - |z|)|f'(z)| \le 1.$$

Prove that \mathcal{F} is a normal family.

6. Let D be a bounded domain in \mathbb{C} and let ϕ be a conformal self-map of D. Let $z_0 \in D$ so that

$$\phi(z) = z_0 + (z - z_0) + O((z - z_0)^2)$$

Prove that ϕ must be the identity (i.e., $\phi(z) = z$).

7. Let $a \in D(0,1)$ and let

$$\phi_a(z) = \frac{z - a}{1 - \overline{a}z}.$$

Define $\phi_a^1(z) = \phi_a(z)$, and for $j \geq 1$, $\phi_a^{j+1}(z) = \phi_a \circ \phi_a^j(z)$. Prove that $\{\phi_a^k\}_{k=1}^{\infty}$ converges normally to a holomorphic function f on D(0,1), and find the function f.

- 8. Let G be a simply connected domain in \mathbb{C} so that $D \neq \mathbb{C}$. Let \mathcal{F} be a family of holomorphic maps $f: D(0,1) \to G$. Prove or disprove that \mathcal{F} is a normal family.
- 9. Let $\mathcal{F}(D(0,1))$ be a family of holomorphic functions on the unit disk D(0,1) so that for $f \in \mathcal{F}(D(0,1))$, one has

$$(\text{Re } f(z))^2 \neq (\text{Im } (f(z))^2, \quad z \in D(0, 1).$$

Prove that $\mathcal{F}(D(0,1))$ is a normal family in the sense that every sequence has a normally convergent subsequence or a subsequence that conveges to ∞ normally.

3.15 The Reflection Principle

Let D be a domain in \mathbb{C} . Define the reflection domain of D with respect to the real line \mathbb{R}

$$D^* = D_{\mathbb{R}}^* = \{ \overline{z} : z \in D \}$$

THEOREM 3.30 Let D be a domain in \mathbb{R}^2_+ such that $(a,b) \subset \overline{D}$. Let f be holomorphic in D, continuous on $D \cup (1,b)$ and $f:(a,b) \to \mathbb{R}$. Then there is a holomorphic function F on $D \cup (a,b) \cup D^*$ such that F = f on D.

Proof. Let

$$F(z) = \left\{ \frac{f(z)}{f(\overline{z})}, \text{ if } z \in D \cup (a, b); \right.$$

We will prove F is holomorphic in $D \cup (a, b) \cup D^*$.

First we show F(z) is holomorphic in D^* . Fix $z_0 \in D^*$, and let $w_0 = \overline{z}_0 \in D$. Since F is holomorphic in D

$$f(z) = \sum_{n=0}^{\infty} a_n (z - w_0)^n, \quad |z - w_0| < \delta$$

for some $\delta > 0$. Then

$$\overline{f(\overline{z})} = \overline{\sum_{n=0}^{\infty} a_n (\overline{z} - w_0)^n} = \sum_{n=0}^{\infty} \overline{a_n} (\overline{z} - w_0)^n = \sum_{n=0}^{\infty} \overline{a_n} (z - z_0)^n,$$

which is holomorphic in $|z-z_0| < \delta$. Therefore, F is holomorphic in D^* . Since $f(a,b) \subset \mathbb{R}$. It is easy to see that F is continuous on $D_e =: D \cup (a,b) \cup D^*$. One may apply Morera's theorem or Cauchy's theorem to prove that F is holomorphic in D_e (see fall quarter, homework 6, problem 1.)

EXAMPLE 41 Let f(z) be holomorphic in \mathbb{R}^2_+ and is continuous on $\mathbb{R}^2_+ \cup (0,1)$. Let $f(x) = \cos x + i \sin x$ when $x \in (0,1)$ Find all such f.

Solution. Let

$$g(z) = f(z) - (\cos z + i \sin z), \quad z \in \mathbb{R}^2_+ \cup (0, 1)$$

Then g is holomorphic in \mathbb{R}^2_+ and continuous on $\mathbb{R}^2_+ \cup (0,1)$ and g(x)=0 when $x \in (0,1)$. By the reflection principle, g can be extended holomorphically to $D_e =: \mathbb{C} \setminus ((-\infty,0] \cup [1,\infty))$ and g(x)=0 when $x \in (0,1)$. D_e is a domain which includes (0,1). By the uniqueness theorem of holomorphic

functions, $g(z) \equiv 0$ on D_e . Therefore, $f(z) = \cos z + i \sin z$ on $\mathbb{R}^2_+ \cup (0,1)$.

Let D be a domain in $D(z_0, R)$, we define the reflection domain of D with respect to the real line $\partial D(z_0, R)$

$$D^* = D^*_{\partial D(z_0, R)} = \{ z_0 + \frac{R^2}{\overline{z} - \overline{z}_0} : z \in D(z_0, R) \}$$

THEOREM 3.31 Let D be a domain in $D(z_0, R)$ and Γ a portion of the circle $|z - z_0| = R$ such that $\Gamma \subset \overline{D}$. If f is holomorphic in D, continuous on $D \cup \Gamma$, and $f|_{\Gamma} : \Gamma \to \mathbb{R}$, then there is a holomorphic function F on $D \cup (a, b) \cup D^*$ such that F = f on D.

Proof. Let S be a Möbius transformation from \mathbb{R}^2_+ onto $D(z_0, R)$. Let g(z) = f(S(z)) and $(a, b) = S^{-1}(\Gamma)$. Then g can be extended to be holomorphic in $D_e = \mathbb{R}^+_2 \cup (a, b) \cup \mathbb{R}^-_2$. Thus

$$F(z) = g(S^{-1}(z))$$

is holomorphic in $S(D_e) = D \cup \Gamma \cup D^*$.

3.16 Homework 6

- Problems related to holomorphic extensions
 - 1. Let f(z) be holomorphic on D(0,1) and continuous on $\overline{D(0,1)}$ such that $f(e^{i\theta}) = 2$ for all $\theta \in [0, \pi/4)$. Prove that f is a constant.
 - 2. Let f be holomorphic on \mathbb{R}^2_+ and continuous on $\mathbb{R}^2_+ \cup (0,1)$. Assume that

$$f(x) = i\sin(x), \quad x \in (0, 1).$$

What is f?

- 3. Let f(z) be entire such that $f(x+ix) \in \mathbb{R}$ for all $x \in \mathbb{R}$. Assume that f(i) = 0. Prove that f(1) = 0.
- 4. Let $L = \{x + iy : y = ax + b, x \in \mathbb{R}\}$ be a line in \mathbb{C} . Let $\mathbb{R}^2_L = \{z = x + iy \in \mathbb{C} : y > ax + b, x \in \mathbb{R}\}$. Suppose f is holomorphic in \mathbb{R}^2_L and continuous on $\overline{\mathbb{R}^2_L}$ so that $f(L) \subset L$. Prove that there is an entire function F so that f(z) = F(z) for $z \in \mathbb{R}^2_L$.

5. Let

$$f(z) = \sum_{n=1}^{\infty} \frac{z^{2n}}{n}$$

be holomorphic in D(0,1). Find all singular points on $\partial D(0,1)$ and justify your answer.

6. Prove that every boundary point of

$$f(z) = \sum_{n=1}^{\infty} \frac{z^{n!}}{n^{100}}$$

is a singular point.

7. Prove that every boundary point of

$$f(z) = \sum_{n=1}^{\infty} \frac{z^{2^n}}{2^n}$$

is a singular point.

8. Prove or disprove that there is a nonconstant holomorphic function f on the domain

$$D = \{z \in \mathbb{C} : |z+1| > 1 \text{ and } |z+2| < 2\}$$

and continuous on \overline{D} with f(z)=0 when z is in $S=\{z\in\mathbb{C}:|z+2|=2 \text{ and } \operatorname{Re} z\in(-2,-1)\}.$

3.17 Singular Points and Regular Points

Definition 3.32 Let D be a domain in \mathbb{C} , f a holomorphic function on D; a point $z_0 \in \partial D$ is said to be a regular point for f on D if there is a holomorphic function F in $D(z_0, \epsilon)$ such that F = f on $D \cap D(z_0, \epsilon)$ for some $\epsilon > 0$. If z_0 is not a regular point, then we say that z_0 is a singular point for f on D.

EXAMPLE 42 Consider

$$f(z) = \sum_{n=0}^{\infty} z^n, \quad z \in D(0,1).$$

We know that

$$f(z) = \frac{1}{1-z}, \quad z \in D(0,1).$$

It is easy see that z = 1 is a singular point for f on D(0,1), and every other point in $\partial D(0,1)$ is a regular point.

EXAMPLE 43 Consider

$$f(z) = \sum_{n=0}^{\infty} z^{n!}, \quad z \in D(0,1).$$

Prove that every point in $\partial D(0,1)$ is a singular point for f on D(0,1).

Proof. Consider

$$z_0 = e^{i2\pi p/q}, \quad p, q \in \mathbb{N}, \ gcd(p, q) = 1.$$

Then

$$f(rz_0) = \sum_{n=0}^{q-1} (rz_0)^{n!} + \sum_{n=q}^{\infty} (rz_0)^{n!} = \sum_{n=0}^{q-1} (rz_0)^{n!} + \sum_{n=q}^{\infty} r^{n!}$$

It is easy to see that

$$\lim_{r \to 1^{-}} f(rz_0) = +\infty.$$

So z_0 is a singular point. Since $\{e^{i2\pi p/q}: p, q \in \mathbb{N}\}$ is dense in $\partial D(0,1)$, every point $z_0 \in \partial D(0,1)$ is a singular point. \square

EXAMPLE 44 Consider

$$f(z) = \sum_{n=0}^{\infty} \frac{z^{n!}}{2^n}, \quad z \in D(0,1)$$

Prove every point in $\partial D(0,1)$ is a singular point for f on D(0,1).

Hint: Consider f'(z) instead of f(z).

4 Infinite Products

Let f be holomorphic in a domain D. If $\{z_1, \dots, z_m\}$ are zeros of f counting multiplicity, then

$$g(z) = \frac{f(z)}{\prod_{j=1}^{m} (z - z_j)}$$

is holomorphic in D and has no zeros in D.

Question. If $m = \infty$, what does $\prod_{j=1}^{\infty} (z - z_j)$ mean?

4.1 Basic properties of infinite products

Definition 4.1 Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of non-zero complex numbers. We say that $\prod_{j=1}^{\infty} z_n$ defines a complex number z if

$$\lim_{n \to \infty} \prod_{j=1}^{n} z_j = z$$

When $z \neq 0$, then

$$z_n = \frac{\prod_{j=1}^n z_j}{\prod_{j=1}^{n-1} z_j} \to \frac{z}{z} = 1 \quad \text{as } n \to \infty.$$

THEOREM 4.2 Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of non-zero complex numbers. Then $\prod_{j=1}^{\infty} z_n$ converges to a non-zero complex number if and only if $\sum_{n=1}^{\infty} \ln z_n$ converges.

Proof. If $\sum_{n=1}^{\infty} \ln z_n$ converges to $z \in \mathbb{C}$, then

$$\prod_{j=1}^{\infty} z_j = e^{\sum_{j=1}^{\infty} \ln z_j} = e^z.$$

Conversely, if $w_n = \prod_{j=1}^n z_j$ converges to $z \neq 0$, then

$$\ln w_n = \sum_{j=1}^n \ln z_j + 2k_n \pi i$$

where k_n is some integer. Then

$$\ln w_{n+1} - \ln w_n = 2(k_{n+1} - k_n)\pi i \to 0$$
 as $n \to \infty$.

Therefore, there is an N such that if $n \geq N$, one has $k_n = k_N$. Therefore,

$$\ln w_n = \sum_{j=1}^n \ln z_j + k_N 2\pi i, \quad n \ge N$$

Therefore,

$$\sum_{j=1}^{\infty} \ln z_j = \ln z + 2k_N \pi i.$$

The proof is complete.

Definition 4.3 Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of non-zero complex numbers. We say that $\prod_{j=1}^{\infty} z_n$ converges to a non-zero complex number z absolutely if

$$\sum_{j=1}^{\infty} |\ln z_j| < \infty.$$

Therefore, we have

- 1) $\prod_{n=1}^{\infty} (1+z_n)$ converges to non-zero complex number if and only if $\sum_{j=1}^{\infty} \ln(1+z_j)$ converges.
- 2) $\prod_{n=1}^{\infty} (1+z_n)$ converges to non-zero complex number absolutely if and only if $\sum_{j=1}^{\infty} |\ln(1+z_j)|$ converges.

Notice that

$$\frac{|z|}{2} \le \ln(1+|z|) \le 2|z|, \quad |z| \le 1/2.$$

We have

THEOREM 4.4 $\prod_{n=1}^{\infty} (1+z_n)$ converges to a non-zero complex number absolutely if and only if $\sum_{n=1}^{\infty} |z_n|$ converges and for all $n, z_n \neq -1$.

Proof. Without loss of generality, we may assume that $|z_n| \ll 1$. Then

$$|\ln(1+z_n)| = \sqrt{(\ln|1+z_n|)^2 + \theta_n^2}, \quad \theta_n = \tan^{-1}\frac{y_n}{1+x_n}.$$

Assume that $|x_n| \leq \frac{1}{2}$. Then

$$\frac{|y_n|}{2} \le |\theta_n| \le \frac{|y_n|}{1+x_n} \le 2|y_n|$$

and

$$-2|z_n| \le \ln(1-|z_n|) \le \ln|1+z_n| \le \ln(1+|z_n|) \le 2|z_n|.$$

Notice that

$$\ln|1+z_n| = \frac{1}{2}\ln[(1+x_n)^2 + y_n^2].$$

If $x_n \ge 0$ and $|x_n| \le |y_n|$, then $|x_n| \le 2|\theta_n|$. Otherwise, if $-\frac{1}{2} \le x_n < 0$ and $|x_n| > |y_n|$, then $x_n + x_n^2 + y_n^2 \le 0$. Therefore,

$$\ln|1+z_n| = \frac{1}{2}\ln[(1+x_n)^2 + y_n^2] \ge \ln(1+x_n) \ge \frac{x_n}{2}, \quad x_n \le 1/2$$

If $x_n < 0$ then

$$\ln|1+z_n| = \frac{1}{2}\ln[1+2x_n+x_n^2+y_n^2] \le \frac{1}{2}\ln(1+x_n) \le \frac{x_n}{2}, \quad x_n \le 1/2$$

Therefore

$$|z_n| \le 2(|\ln|1 + z_n|| + |\theta_n|) \le 4|\ln(1 + z_n)|$$
, if $|z_n| \le 1/2$.

In summary, we have

$$\sum_{n=1}^{\infty} |\ln(1+z_n)| \text{ converges if and only if } \sum_{n=1}^{\infty} |z_n| \text{ converges }. \quad \square$$

4.2 Examples

EXAMPLE 45 Determine if each of the following infinite products converges:

$$(i) \prod_{j=1}^{\infty} (1 - \frac{i}{j^2})$$

(ii)
$$\prod_{n=2}^{\infty} (1 - \frac{1}{n})$$
.

Additionally, show that the following infinite product converges and find its value:

(iii)
$$\prod_{j=2}^{\infty} (1 - \frac{1}{j^2})$$
.

Solution.

- (i) Since $|\frac{i}{j^2}| = \frac{1}{j^2}$ and $\sum_{j=1}^{\infty} \frac{1}{j^2}$ converges. By the previous theorem, we have $\sum_{j=1}^{\infty} (1 \frac{i}{j^2})$ converges absolutely.
- (ii) Observe that

$$\prod_{n=2}^{m} (1 - \frac{1}{n}) = \prod_{n=2}^{m} \frac{n-1}{n} = \frac{1}{m} \to 0 \text{ as } m \to \infty.$$

But $\prod_{n=2}^{\infty} (1 - \frac{1}{n})$ does not converge absolutely.

(iii) Notice that

$$\prod_{j=2}^{m} (1 - \frac{1}{j^2}) = \prod_{j=2}^{m} \frac{j+1}{j} \frac{j-1}{j} = \frac{m+1}{2} \frac{1}{m} \to \frac{1}{2}$$

as $m \to \infty$. Therefore, $\prod_{n=2}^{\infty} (1 - \frac{1}{j^2}) = \frac{1}{2}$ and it converges absolutely.

Definition 4.5 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on a domain D. We say that $\prod_{j=1}^{\infty} (1+f_n)$ converges absolutely and uniformly on a compact set $K \subset D$ there is a positive integer N = N(K) if

$$\sum_{j=N}^{\infty} |\ln(1 + f_n(z))|$$

converges uniformly on K.

THEOREM 4.6 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on a domain D. If $\prod_{j=1}^{\infty} (1+f_n)$ converges absolutely and uniformly on any compact set $K \subset D$ then

$$\prod_{n=1}^{\infty} (1 + f_n(z))$$

defines a holomorphic function on D.

Proof. This is straight forward.

4.3 Infinite Products and Factorization Factors

For each p > 0, we let

$$E_p(z) = \begin{cases} (1-z)e^{z+z^2/2+\dots+z^p/p}; & p \ge 1, \\ 1-z; & p = 0 \end{cases}$$

Lemma 4.7 For any non-negative integer p, $E_p(z)$ satisfies

- (i) $E_p(0) = 1$;
- (ii) $|E_p(z) 1| \le |z|^{p+1}$ if $|z| \le 1$.

Proof. It is obvious that $E_p(0) = 1$. Now, we write

$$E_p(z) = 1 + \sum_{n=1}^{\infty} b_n z^n.$$

Then

$$E_p'(z) = \sum_{n=1}^{\infty} nb_n z^{n-1}.$$

If $p \ge 1$ then

$$E'_p(z) = e^{z+z^2/2+\dots+z^p/p}[-1+(1-z)(1+z+\dots+z^{p-1})]$$

= $-z^p e^{z+z^2/2+\dots+z^p/p}$

This implies that

- (a) $b_n \leq 0$ for $n \geq 1$
- (b) $b_k = 0 \text{ if } 1 \le k \le p$
- (c) $0 = E_p(1) = 1 + \sum_{n=1}^{\infty} b_n$.

Therefore,

$$|E_p(z) - 1| = |\sum_{n=1}^{\infty} b_n z^n| \le |z|^{p+1} |\sum_{n=1}^{\infty} b_n| = |z|^{p+1}.$$

THEOREM 4.8 Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers such that $\lim_{n\to\infty} a_n = \infty$. Then there is a holomorphic function f on \mathbb{C} such that $Z(f) = \{a_1, a_2, \dots\}$.

Proof. We define

$$f(z) = \prod_{n=1}^{\infty} E_{n-1} \left(\frac{z}{a_n} \right)$$

It is clear that $E_{n-1}(\frac{z}{a_n})$ is holomorphic in \mathbb{C} and $E_{n-1}(\frac{z}{a_n}) = 0$ if only if $z = a_n$, and it is a simple zero. But the previous lemma, we have

$$|E_{n-1}(\frac{z}{a_n}) - 1| \le \frac{|z|^n}{|a_n|^n}, \text{ if } |z| \le |a_n|.$$

Therefore, the infinite product $\prod_{n=1}^{\infty} E_{n-1}(z/a_n)$ converges uniformly on any compact subset of \mathbb{C} . Therefore, f is holomorphic in \mathbb{C} and $Z(f) = \{a_1, a_2, a_3, \dots\}$. \square

THEOREM 4.9 Let $D \neq \mathbb{C}$ be a domain in \mathbb{C} and let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of points in D without any accumulation points in D. Then there is a holomorphic function f on D such that $Z(f) = \{a_1, a_2, \dots\}$.

Proof. Since $D \neq \mathbb{C}$, there is a $a_n^* \in \partial D$ such that $|a_n - a_n^*| = \operatorname{dist}(a_n, \partial D)$. Let

 $f(z) = \prod_{n=1}^{\infty} E_{n-1} \left(\frac{a_n - a_n^*}{z - a_n^*} \right)$

It is clear that $E_{n-1}(\frac{a_n-a_n^*}{z-a_n^*})$ is holomorphic in D and $E_{n-1}(\frac{a_n-a_n^*}{z-a_n^*})=0$ if only if $z=a_n$, and it is a simple zero. By the previous lemma,

$$|E_{n-1}(\frac{a_n - a_n^*}{z - a_n^*}) - 1| \le \frac{|a_n - a_n^*|^n}{|z - a_n^*|^n}, \quad \text{if } |a_n - a_n^*| \le |z - a_n^*|.$$

For any compact subset K of D, since $\lim_{n\to\infty} |a_n - a_n^*| = 0$, there is an N such that if $n \geq N$ then

$$|z - a_n^*| \ge 2|a_n - a_n^*|$$
 for all $z \in K$.

This implies that f is well-defined and holomorphic in D. Moreover, $Z(f) = \{a_1, a_2, a_3, \dots\}$.

4.4 Weierstrass Factorization Theorem

THEOREM 4.10 Let D be a domain in \mathbb{C} and let $\{a_n\}_{n=1}^{\infty}$ be a sequence of points in D without any accumulation points in D. Then there is a holomorphic function f on \mathbb{C} such that $Z(f) = \{a_1, a_2, \dots\}$.

Proof. Case 1. If $D = \mathbb{C}$, then $\lim_{n\to\infty} a_n = \infty$. Theorem 4.8 shows the existence of such holomorphic function f.

Case 2. $D \neq \mathbb{C}$. Since $\{a_n : n \in \mathbb{N}\}$ has no accumulation point in D, there is a $z_0 \in D$ and r > 0 such that $|a_n - z_0| \geq r$. Let $\tilde{D} = \{1/(z - z_0) : z \in D\}$ and $\tilde{a}_n = 1/(a_n - z_0)$. Then $\{\tilde{a}_n : n \in \mathbb{N}\}$ is a bounded sequence in \tilde{D} . By the previous theorem, there is a the sequence $\{\tilde{a}_n^*\}_{n=1}^{\infty} \subset \partial \tilde{D}$ with $|\tilde{a}_n - \tilde{a}_n^*| = \operatorname{dist}(\tilde{a}_n, \partial \tilde{D})$ and the holomorphic function

$$g(z) = \prod_{n=1}^{\infty} E_{n-1}(\frac{\tilde{a}_n - \tilde{a}_n^*}{z - \tilde{a}_n^*}), z \in \tilde{D}$$

such that

$$Z(g) = \{\tilde{a}_n : n \in \mathbb{N}\}.$$

Since $\{\tilde{a}_n\}_{n=1}^{\infty}$ and $\{\tilde{a}_n^*\}_{n=1}^{\infty}$ are bounded, one has when z is very large,

$$\left| E_{n-1} \left(\frac{\tilde{a}_n - \tilde{a}_n^*}{z - \tilde{a}^*} \right) - 1 \right| \le \left| \frac{\tilde{a}_n - \tilde{a}_n^*}{z - \tilde{a}^*} \right|^n \le \frac{1}{2^n}$$

Therefore, since $E_p(0) = 1$, one can see that

$$\lim_{z \to \infty} g(z) = b \in \mathbb{C} \setminus \{0\}.$$

Let

$$f(z) = g(\frac{1}{z - z_0}), \quad z \in D \setminus \{z_0\}, \quad f(z_0) = b.$$

Then f is holomorphic in D and $Z(f) = \{a_n : n \in \mathbb{N}\}.$

The following the Weierstrass' factorization theorem for a meromorphic function.

THEOREM 4.11 Let D be a domain in \mathbb{C} and let f be a meromorphic function on D then there are three holomorphic functions g, f_1, f_2 on D such that

- 1. $Z(f) = Z(f_1);$
- 2. $P(f) = Z(f_2);$
- 3. $f(z) = \frac{f_1(z)}{f_2(z)}$.

where P(f) is the set of poles of f counting orders.

Proof. Let $P(f) = \{w_1, w_2, \dots, w_m, \dots\}$ be the poles of f in D counting orders. Then, by the previous theorem, there is a holomorphic function f_2 on D such that

$$f_2(z) = \prod_{n=1}^{\infty} E_{n-1} \left(\frac{z}{w_n} \right)$$

Let

$$f_1(z) = f(z)f_2(z)$$

Then $f_1(z)$ is holomorphic in D and $Z(f) = Z(f_1)$. Moreover,

$$f(z) = \frac{f_1(z)}{f_2(z)}.$$

THEOREM 4.12 Let f be a meromorphic function on \mathbb{C} . Let $Z(f) = \{z_n : n \in \mathbb{N}\}$ be zero set of f counting multiplicity and $P(f) = \{w_n : n \in \mathbb{N}\}$ denote the set of poles counting order. Then there is a holomorphic function g on \mathbb{C} such that

$$f(z) = e^{g(z)} \frac{f_1(z)}{f_2(z)}$$

with

$$f_1(z) = \prod_{n=1}^{\infty} E_{n-1}\left(\frac{z}{z_n}\right)$$
 and $f_2(z) = \prod_{n=1}^{\infty} E_{n-1}\left(\frac{z}{w_n}\right)$.

Proof. By the definitions of f_1 and f_2 , one has

$$h(z) := \frac{f(z)f_2(z)}{f_1(z)}$$

is holomorphic in $\mathbb C$ and has no zeros in $\mathbb C$. Since $\mathbb C$ is simply connected, there is a holomorphic function g on $\mathbb C$ such that $h(z)=e^{g(z)}$. This implies that

$$f(z) = e^{g(z)} \frac{f_1(z)}{f_2(z)}.$$

4.5 Application to Singular Points

THEOREM 4.13 Let D be a domain in \mathbb{C} . Then there is a holomorphic f on D such that every point $z_0 \in \partial D$ is a singular point for f on D.

Proof. Choose a sequence of bounded domains D_n in D such that $\partial D_n \subset D$ and $D_n \to D$ increasingly and

$$\frac{1}{2n} \le \operatorname{dist}(\partial D_n, \partial D) < \frac{1}{n} \quad \text{if } m \ne n.$$

Choose k_n many points $z_{n,k}$ in ∂D_n such that $|z_{n,k} - z_{n,j}| > 2^{-n+10}$ and $\partial D_n \subset \bigcup_{k=1}^{k_n} D(z_{n,k}, 2^{-n})$. Then $Z = \{z_{n,k} : k = 1, \dots, k_n, n \in \mathbb{N}\}$ is a set of points in D having no accumulation points in D. Every point in ∂D is an accumulation point of Z. There is a non-constant holomorphic function f on D such that Z(f) = Z. Then every point in ∂D is a singular point for f in D. Otherwise, there is $z_0 \in \partial D$ such that f can be extended to be holomorphic in $D(z_0, \delta_0)$ for $\delta > 0$, but z_0 is an accumulation point of Z(f). The Uniqueness theorem of holomorphic function implies $f \equiv 0$. This is a contradiction.

4.6 Mittag-Leffler's Theorem

Definition 4.14 A singular part about point z_0 is a function

$$S_{z_0}(z) = \sum_{k=-m}^{-1} a_k (z - z_0)^k, \quad z \in \mathbb{C} \setminus \{z_0\}.$$

Existence of the prescribing singular parts theorem

THEOREM 4.15 (Mittag-Leffler's theorem) Let D a domain in \mathbb{C} , and let $\{z_n\}_{n=1}^{\infty}$ be a sequence of points in D with no accumulation point in D. Let

$$S_n(z) = \sum_{k=-m_n}^{-1} a_{n,k} (z - z_n)^{-k}$$

be a singular part about z_n . Then there is a meromorphic function f on D and holomorphic in $D \setminus \{z_n : n \in \mathbb{N}\}$ such that $f(z) - S_n(z)$ is holomorphic in a neighborhood of z_n .

Proof. First, we assume that D is bounded. Then there is a sequence $\{w_n \in \partial D\}$ such that

$$dist(z_n, \partial D) = |z_n - w_n|, \quad n \in \mathbb{N}.$$

Assume that there is a holomorphic function $T_n(z)$ in D such that

$$|T_n(z) - S_n(z)| < 2^{-n}, \quad |z - w_n| > 2|z_n - w_n|$$

Then we define

$$f(z) = \sum_{n=1}^{\infty} (T_n(z) - S_n(z)), \quad z \in D \setminus \{z_n : n \in \mathbb{N}\}\$$

Then f is holomorphic in $D \setminus \{z_n : n \in \mathbb{N}\}$. In fact, for any compact subset $K \subset D \setminus \{z_n : n \in \mathbb{N}\}$, there is an N such that

$$|z - w_n| > 2|z_n - w_n|, \quad n \ge N, z \in K.$$

Then $\sum_{n=1}^{\infty} (T_n(z) - S_n(z))$ converges uniformly on K. This implies that f is holomorphic in $D \setminus \{z_n : n \in \mathbb{N}\}$. Since T_n is holomorphic, f is meromorphic in D and has the singular part S_n at z_n .

Next, we shall prove the existence of $T_n(z)$. Consider

$$\frac{1}{z - z_n} = \frac{1}{z - w_n - (z_n - w_n)} = \frac{1}{z - w_n} \sum_{k=0}^{\infty} \left(\frac{z_n - w_n}{z - w_n}\right)^k$$

Choose $K_n \geq n$ such that

$$\sum_{k=K_n}^{\infty} (1/2)^k \le 2^{-n} \frac{\min\{1, |w_n - z_n|^{m_n + 1}\}}{\left(\sum_{k=-m_n}^{-1} |a_{n,k}| |k| + 1\right)}.$$

Let

$$t_n(z) = \frac{1}{z - w_n} \sum_{k=0}^{K_n} \left(\frac{z_n - w_n}{z - w_n}\right)^k.$$

When $|z - w_n| > 2|z_n - z_n|$ we have

$$\left| \frac{1}{z - z_n} - t_n(z) \right| \le 2^{-n} \frac{\min\{|w_n - z_n|^{m_n}, 1\}}{\left(\sum_{k=-m_n}^{-1} |a_{n,k}| |k| + 1\right)}.$$

Let

$$T_n(z) = \sum_{k=1}^{m_n} a_{n,-k} t_n(z)^k.$$

 $T_n(z)$ is a polynomial.

When $|z - w_n| \ge 2|z_n - w_n|$, one has

$$|z - z_n| \ge |z - w_n| - |z_n - w_n| \ge |z_n - w_n|$$

and

$$\left|\frac{1}{z-z_n}\right| \le \frac{1}{|z_n-w_n|}, \quad |t_n(z)| \le \frac{1}{|z_n-w_n|}$$

and

$$|S_n - T_n(z)| \leq \sum_{k=1}^{m_n} |a_{n,-k}| \left| \left(\frac{1}{z - z_n} \right)^k - t_n(z)^k \right|$$

$$\leq \sum_{k=1}^{m_n} |a_{n,-k}| \sum_{\ell=0}^{k-1} \frac{|t_n(z)|^{\ell}}{|z - z_n|^{k-1-\ell}} \left| \frac{1}{z - z_n} - t_n(z) \right|$$

$$\leq \sum_{k=1}^{m_n} \frac{|a_{n,-k}|k}{|z_n - w_n|^{k-1}} \left| \frac{1}{z - z_n} - t_n(z) \right| < 2^{-n}.$$

The claim is proved and the theorem is proved.

Second, we assume $D = \mathbb{C}$.

Since $\lim_{n\to\infty} z_n = \infty$. When $|z| < 2|z_n$, one has

$$\frac{1}{z - z_n} = -\frac{1}{z_n} \frac{1}{1 - \frac{z}{z_n}} = -\frac{1}{z_n} \sum_{k=0}^{\infty} \left(\frac{z}{z_n}\right)^k$$

Following the argument above, one can find k_n such that

$$T_n(z) = \sum_{k=1}^{m_n} a_{n,-k} \Big(- \sum_{\ell=0}^{k_n} \frac{z^{\ell}}{z_n^{\ell+1}} \Big)^k$$

such that

$$|S_n(z) - T_n(z)| < 2^{-n}$$
, when $|z| < 2|z_n|$

With the same argument as the first case, one can complete the proof of the theorem.

Third, When $D \neq \mathbb{C}$ and is unbounded. One may follow the proof the Weierstrass Factorization theorem to deal with the case. Omit it here.

4.7 Homework 7

- 1. Determine whether $\prod_{n=2}^{\infty} \left(1 + (-1)^n \frac{1}{n}\right)$ converges. Do the same for $\prod_{n=2}^{\infty} \left(1 + (-1)^n \frac{1}{\sqrt{n}}\right)$.
- 2. For which z does $\prod_{n=1}^{\infty} (1+z^{3^n})$ converge?
- 3. If |z| < R, then prove that

$$\prod_{n=0}^{\infty} \left(\frac{R^{2^n} + z^{2^n}}{R^{2^n}} \right) = \frac{R}{R - z}.$$

4. Let f be entire and have a first-order (simple) zero at each of the nonpositive integers. Prove that

$$f(z) = ze^{g(z)} \prod_{j=1}^{\infty} \left[(1 + \frac{z}{j})e^{-z/j} \right]$$

for some entire function g.

5. Suppose that $\sum_{n=1}^{\infty} |\alpha_n - \beta_n| < \infty$. Determine the set of z for which $\prod_{n=1}^{\infty} \frac{z-\alpha_n}{z-\beta_n}$ converges normally.

6. Prove that

$$\frac{\sin z}{\sin(\pi z)} = \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{n \sin n}{z^2 - n^2}.$$

7. Let $\{a_n\}_{n=1}^{\infty} \subset D(0,1)$ be such that $\sum_{n=1}^{\infty} (1-|a_n|) < \infty$. Discuss the convergence of

$$\prod_{n=1}^{\infty} B_{a_n}(z), \quad B_{a_n} = \frac{\overline{a_n}}{|a_n|} \frac{a_n - z}{1 - \overline{a_n} z}.$$

- 8. Use Mittag-Leffler's theorem to prove the following: Let $\{a_j\}_{j=1}^{\infty}$ be a squence of points in a simply connected domain D without any accummulation points in D. Then there is a holomorphic function f so that $Z(f) = \{a_j\}_{j=1}^{\infty}$ counting multiplicity.
- 9. Suppose that g_1, g_2 are entire functions with no common zeros. Prove that there are entire functions f_1 and f_2 such that

$$f_1g_1 + f_2g_2 \equiv 1.$$

10. Construct a meromorphic function f on \mathbb{C} so that $\mathbb{N} = \{1, 2, 3, \dots\}$ is its set of poles and the singular part at z = n is

$$S_n(z) = \sum_{k=-2n}^{-1} 3^k (z-n)^k, \quad n = 1, 2, 3, \cdots.$$

Hint for Problem 6:

Consider

$$g(z) = \frac{\sin z}{\sin(\pi z)} - \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{n \sin n}{z^2 - n^2}.$$

Prove that

- (i) g is holomorphic in \mathbb{C} .
- (ii) g is bounded on $z = \pm (n + \frac{1}{2}) + iy$ and $z = x + \pm (n + 1/2)$.

Conclude that g is a constant and g(0) = 0.

Hint for Problem 3: Prove that

$$f(z) = \prod_{n=0}^{\infty} (1 + z^{2^n}) = \frac{1}{1-z}.$$

Notice that

$$f(z) = (1+z) \prod_{n=1}^{\infty} (1+z^{2^n}) = (1+z) \prod_{n=0}^{\infty} (1+(z^2)^{2^n}) = (1+z)f(z^2).$$

Write

$$f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n.$$

Since

$$a_{2n} = a_n, \quad a_{2n+1} = a_n, \quad a_0 = 1,$$

 $a_n = a_0 = 1$ for all n. So,

$$f(z) = \frac{1}{1-z}. \quad \Box$$

Final Review

Final Review = Midterm Review + the following materials

- 1. Proper, biholomorphic maps
- **EXAMPLE 46** (i) Find all proper holomorphic maps f on D(0,1) with $f \in C(\overline{D}(0,1))$.
 - (ii) Prove or disprove that there is a proper holomorphic map $f: \mathbb{C} \setminus \{0,1\} \to D(0,1) \setminus \{0\}$.
- 2. Automorphism group Aut(D)

EXAMPLE 47 Find the following:

- (i) Aut(D(0,1))
- (ii) $Aut(\mathbb{C} \setminus \{0\})$
- (iii) $Aut(\mathbb{C} \setminus \overline{D}(0,1))$
- 3. Möbius transformations, Cross ratio
- **EXAMPLE 48** (i) Find a Möbius transformation that maps 2i, i+1 and -3 to the points 1+i, -1-i and 2+2i;
 - (ii) Prove that the cross ratio has the following property: Let L be the 'circle" determined by three points z_1, z_2 and z_3 . Let $z \in \mathbb{C} \setminus L$ and z^* be the symmetric point of z with respect to L. Then

$$(z^*; z_1, z_2, z_2) = \overline{(z; z_1, z_2, z_3)}.$$

- 4. Conformal mappings
- **EXAMPLE 49** (i) Find a conformal map which maps $D = D(2,2) \setminus \overline{D}(1,1)$ to the unit disc;
 - (ii) Find a conformal map which maps the unit disc to $D(0,1) \setminus \{0\}$.

5. Riemann mapping theorem

EXAMPLE 50 (i) State the Riemann mapping theorem

- (ii) Prove the uniqueness portion of the Riemann mapping theorem.
- (iii) Let D be a simply connected domain in \mathbb{C} , $D \neq \mathbb{C}$ and $z_0 \in D$. Prove that $\mathcal{F} = \{f : D \to D(0,1) \text{ is one-to-one }, f(z_0) = 0\}$ is not empty.

6. Normal families

- **EXAMPLE 51** (i) Let \mathcal{F} be a family of holomorphic functions on D(0,1) such that f(0) = i and Im $f(z) \neq \text{Re } f(z)$ for all $z \in D(0,1)$. Prove that \mathcal{F} is a normal family;
- (ii) Prove that the unit ball in Hardy space is a normal family.

7. Reflection Principle

EXAMPLE 52 Let f be holomorphic in $D = \{z = x + iy : x > y\}$ and it is continuous on $D \cup \{(x + ix : x \in [0, 1]\}$ and

$$f(x+ix) = \sin((1-i)x), \quad x \in (0,1)$$

Find all such f.

8. Infinite products

EXAMPLE 53 (i) State Weierstrass Factorization theorem;

- (ii) Prove that $\prod_{j=1}^{\infty} \cos \frac{1}{j}$ converges absolutely;
- (iii) Prove that $|E_p(z) 1| \le |z|^{p+1}$ if $|z| \le 1$;
- (iv) Find an entire holomorphic function f on \mathbb{C} such that zero set of f is $\{2^n : n \in \mathbb{N}\}.$

9. Problems associated to singular points

EXAMPLE 54 (i) Prove that every point $z_0 \in \partial D(0,1) \setminus \{1\}$ is regular point for f in D(0,1) and z=1 is a singular point for f in D(0,1), where

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

(ii) Prove that every point $z_0 \in \partial D(0,1)$ is a singular point for f in D(0,1) where

$$f(z) = \sum_{n=1}^{\infty} \frac{z^{n!}}{2^n}$$

(iii) Let D be a domain in \mathbb{C} . Construct a holomorphic function f in D such that every point $z_0 \in \partial D$ is a singular point of f.