The CR-Obata theorem on compact strictly pseudoconvex pseudo-Hermitian manifolds *

Song-Ying Li

October 17, 2009

Abstract. In this paper, the author proves that the CR analogue of the Obata theorem holds on a torsion-free, strictly pseudoconvex, pseudo-Hermitian CR manifold of dimension $2n + 1$ for integer $n > 1$. This result for the case $n = 1$ was proved recently by Chang and Chiu [3].

1 Introduction and main results

Let (M, θ) be a $(2n + 1)$-dimensional strongly pseudoconvex pseudo-Hermitian manifold in the sense of Webster [20]. Let $H(M)$ be the holomorphic tangent bundle over M. The pseudo-Hermitian form θ is a real nowhere-vanishing one-form on M which annihilates $H(M) \oplus \overline{H(M)}$. Locally, one can choose n complex one-forms θ^α so that $(\theta^1, \theta^2, \cdots, \theta^n)$ form a basis for the holomorphic cotangent bundle $H(M)^*$ and

\begin{equation}
 d\theta = i \sum_{\alpha, \beta=1}^n h_{\alpha\beta} \theta^\alpha \wedge \theta^\beta, \quad \theta^\tau = \overline{\theta^\alpha}
\end{equation}

where $(h_{\alpha\beta})$ is an $n \times n$ positive definite matrix on M. It was shown by Webster [20] that there is a unique way to choose connection one form ω^α_β and $(0, 1)$-form τ^α so that

\begin{equation}
 d\theta^\alpha = \theta^\beta \wedge \omega^\alpha_\beta + \theta^\beta \wedge \tau^\alpha, \quad dh_{\alpha\beta} = h_{\gamma\beta} \omega^\alpha_\gamma + h_{\alpha\gamma} \omega^\gamma_\beta
\end{equation}

and there exist $A_{\alpha\beta} = A_{\beta\alpha}$ so that

\begin{equation}
 \tau^\alpha = \sum_{\beta=1}^n A_{\alpha\beta} \theta^\beta, \quad \text{Tor}(X, X) = 2\text{Im} \sum_{\alpha, \beta=1}^n A_{\alpha\beta} x^\alpha x^\beta, \quad X \in H(M).
\end{equation}

*Primary subject 32V05, 32V20. Secondary subject 53C56. Keywords: Strongly pseudo-convex CR manifold, pseudo-hermitian geometry, sub-Laplacian, eigenvalues
Let $R_{\alpha \beta}$ be the Webster pseudo Ricci curvature and

\begin{equation}
\text{Ric}(X, X) = \sum_{\alpha, \beta=1}^{n} R_{\alpha \beta} x^{\alpha} x^{\beta}, \quad X \in H(M).
\end{equation}

Let Δ_{sb} be the sub-Laplacian on (M, θ), which is twice the real part of Kohn’s Laplacian with respect to the measure $dv = c_n \theta \wedge (d\theta)^{n-1}$ acting on functions on M. Let μ_1 be the first positive eigenvalue of Δ_{sb} on M. The sharp lower bound for μ_1 (analogue of Lichnerowicz theorem for the Riemannian case) was obtained by Greenleaf [8] for $n \geq 3$ and by Li and Luk [15] for $n = 2$. The results can be stated as follows:

THEOREM 1.1 Let (M, θ) be a compact, integrable, $(2n+1)$-dimensional strictly pseudoconvex pseudo-Hermitian manifold in the sense of Webster. If

\begin{equation}
\text{Ric}_m(X, X) - \frac{n+1}{2} \text{Tor}(X, X) \geq k_0 h(X, X) \tag{1.5}
\end{equation}

for all $X \in H_m(M)$ and $m \in M$, then $\mu_1 \geq \frac{n}{n+1} k_0$. Here k_0 is some positive number.

For the case $n = 1$, a partial result was also obtained in [15], where the authors imposed an extra condition involving a derivative of the torsion so that Theorem 1.1 holds. In particular, Theorem 1.1 remains true when M is torsion-free. An alternative extra condition was also given by Chiu in [7], where he proved that Theorem 1.1 remains true for $n = 1$ if the Paneitz operator is positive on M. Whether Theorem 1.1 holds for $n = 1$ without any extra condition is still open.

The following interesting and important problem about whether one has the CR version of Obata theorem for pseudo-Hermitian manifolds has been posed by Li [12] (Problem 2.3) and by Chang and Chiu [3] (Conjecture 1.1):

Problem 1.2 Let (M, θ) be a compact, integrable, $(2n+1)$-dimensional strictly pseudoconvex pseudo-Hermitian manifold in the sense of Webster [20] so that (1.5) holds. If $\mu_1 = \frac{n}{n+1} k_0$ then M is CR equivalent to the unit sphere S^{2n+1} in \mathbb{C}^{n+1}.

1It was pointed out by Chang and Chiu [3] that there is an error in the calculation for Bochner formula by Greenleaf [8]. The correct formula is:

\[
\frac{1}{2} \Delta |\nabla f|^2 = \|\pi_+ D^2 f\|^2 + \|\pi_- D^2 f\|^2 + \text{Re} (\nabla f, \nabla (\Delta f)) + (\text{Ric} - (n+1)/2\text{Tor})(\nabla f, \nabla f) + i(D^2 f)(X_0, (\bar{d}f)^*)
\]

The coefficient in front of Tor, which was $n/2$, is changed to the correct one $-(n+1)/2$, and the proof in [15] is still correct with a slight change coordinate.
For the case \(n = 1 \), the above problem was answered by Chang and Chiu affirmatively under the condition that \((M, \theta)\) is torsion-free. The purpose of this paper is to generalize the theorem of Chang and Chiu for \(n = 1 \) to general dimension \(n \). We will prove the following theorem:

THEOREM 1.3 Let \((M, \theta)\) be a compact, integrable, \((2n + 1)\)-dimensional strictly pseudoconvex pseudo-Hermitian manifold in the sense of Webster [20] so that (1.5) holds. If \(\mu_1 = \frac{n}{n+1} k_0 \) and \((M, \theta)\) is torsion-free, then \(M \) is CR equivalent to the unit sphere \(S^{2n+1} \) in \(C^{n+1} \).

Here is the idea of the proof of Theorem 1.3: It follows from the theorem of Frobenius (see [10]) that any nondegenerate CR-structure on a \((2n + 1)\)-dimensional manifold \(M \) is spherical if and only if \(M \) is isomorphic to \(S^{2n+1} \). Combining this and a theorem of Pinchuk [18] and Chern and Ji in [6], which states that a simply connected manifold \(M \) with a spherical CR-structure must be CR equivalent to \(S^{2n+1} \), it suffices to prove that \((M, \theta)\) is isometric to the sphere \(S^{2n+1}(1/\lambda) \) for some \(\lambda > 0 \). To achieve this goal, the following approach was used in [3] for \(n = 1 \). We choose a local coframe \((\theta, \theta^\alpha, \theta^\overline{\alpha})\) (here \(\theta^\alpha \) may be different from the one in (1.1)) so that

\[
(1.6) \quad d\theta = i\theta^\alpha \wedge \theta^{\overline{\alpha}}
\]

For any \(\lambda \in (0, \infty) \), we let

\[
(1.7) \quad h^\lambda = \text{Re} \theta^\alpha \otimes \theta^{\overline{\alpha}} + \frac{1}{\lambda^2} \theta \otimes \theta
\]

Then \((M, h^\lambda)\) can be viewed as a compact Riemannian manifold without boundary. Let \(\Delta^\lambda \) be the Laplace-Beltrami operator on \((M, h^\lambda)\). To prove \((M, h^\lambda)\) is isomorphic to \(S^{2n+1}(1/\lambda) \) for some \(\lambda > 0 \) under the conditions of Theorem 1.3, it suffices to prove that the conditions of the Obata theorem hold on \((M, h^\lambda)\). The author will prove that this idea also works for general \(n \). The difficulty and complication lie in finding the exact formula relating the pseudo Ricci curvature \(R_{\alpha\overline{\beta}} \) \((1 \leq \alpha, \beta \leq n)\) and the Riemannian Ricci curvature \(R^\lambda_{ij} \) \((1 \leq i, j \leq 2n+1)\). Especially, this is very delicate when \(n > 1 \).

The paper is organized as follows: In Sections 2 and 3, we will derive a formula of the relations between the pseudo Ricci curvature \(R_{\alpha\overline{\beta}} \) and the Riemannian Ricci curvature \(R^\lambda_{ij} \). In Section 4, we will prove that all conditions of the Obata theorem hold on \((M, h^\lambda)\) under the condition of Theorem 1.3, and as a consequence, \((M, h^\lambda)\) is isomorphic to \(S^{2n+1}(1/\lambda) \) and \((M, \theta)\) is CR equivalent to \(S^{2n+1} \).

2 On the Ricci curvatures \(R_{\alpha\overline{\beta}} \) and \(R^\lambda_{ij} \)

Let \((M, \theta)\) be a \((2n + 1)\)-dimensional, strictly pseudoconvex pseudo-Hermitian CR manifold in the sense of Webster [20]. The local coframe \((\theta, \theta^\alpha, \theta^\overline{\alpha})\) is chosen
so that
\begin{equation}
(2.1) \quad d\theta = i\theta^\alpha \wedge \theta^\beta
\end{equation}
and the connection 1-forms ω^β_β are unique (in the sense of Webster [20]) and skew-Hermitian:
\begin{equation}
(2.2) \quad \omega^\beta_\beta = -\omega^{\overline{\beta}}_{\overline{\beta}}.
\end{equation}
Furthermore,
\begin{equation}
(2.3) \quad d\theta^\alpha = \sum_{\beta=1}^n \theta^\beta \wedge \omega^\alpha_\beta + \theta \wedge \tau^\alpha, \quad \tau^\alpha = \sum_{\gamma=1}^n A_{\gamma\alpha} \theta^\gamma
\end{equation}
where
\begin{equation}
(2.4) \quad \overline{A_{\alpha\beta}} = A_{\overline{\beta}\overline{\alpha}} \quad \text{and} \quad A = \left[A_{\alpha\beta}\right]
\end{equation}
is an $n \times n$ symmetric matrix whose entries are complex-valued functions.

The pseudo curvature 2-forms Ω^β_β on (M, θ) are defined as
\begin{equation}
(2.5) \quad \Omega^\beta_\beta = d\omega^\beta_\beta - \omega^\gamma_\beta \wedge \omega^\alpha_\gamma - i\theta^\beta \wedge \tau^\alpha + i\overline{\tau}^\beta \wedge \theta^\alpha
\end{equation}
and
\begin{equation}
(2.6) \quad \overline{\Omega}^\beta_\beta = R_{\beta\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma + \lambda_{\beta\alpha} \wedge \theta^\sigma,
\end{equation}
where $\lambda_{\beta\alpha}$ are 1-forms satisfying (see page 30 in [20])
\begin{equation}
(2.7) \quad \lambda_{\beta\alpha} = W_{\beta\alpha\gamma} \theta^\gamma - W_{\beta\alpha\gamma} \theta^\overline{\gamma}, \quad W_{\beta\alpha\gamma} = W_{\gamma\beta\alpha} \quad \text{and} \quad \overline{W_{\beta\alpha\gamma}} = W_{\overline{\alpha}\overline{\beta}\overline{\gamma}},
\end{equation}
and the pseudo curvature tensor components $R_{\beta\alpha\rho\sigma}$ satisfy
\begin{equation}
(2.8) \quad R_{\beta\alpha\rho\sigma} = R_{\rho\beta\alpha\sigma} = R_{\rho\sigma\beta\alpha}.
\end{equation}
Using the fact that $dd\theta^\alpha = 0$, Webster [[(1.28) and (1.29), [20]] shows that
\begin{equation}
0 = \theta^\beta \wedge \Omega^\beta_\beta + \theta \wedge (d\tau^\alpha - \tau^\beta \wedge \omega^\alpha_\beta) = 0 \quad \text{(mod $(2,1)$-form and $(1,2)$-form)}.
\end{equation}
Combining this with (2.5)—(2.8), one has
\begin{align*}
0 &= \theta^\beta \wedge \lambda_{\beta\alpha} \wedge \theta + \theta \wedge (d\tau^\alpha - \tau^\beta \wedge \omega^\alpha_\beta) \\
&= -W_{\beta\alpha\rho} \theta^\beta \wedge \theta^\rho \wedge \theta + \theta \wedge (d\tau^\alpha - \tau^\beta \wedge \omega^\alpha_\beta).
\end{align*}
Therefore
\begin{equation}
(2.9) \quad W_{\beta\alpha\rho} \theta^\beta \wedge \theta^\rho = (d\tau^\alpha - \tau^\beta \wedge \omega^\alpha_\beta) \quad \text{(mod θ)}.
\end{equation}
In particular,
\[\lambda_{\beta\tau} = 0 \quad \text{if} \quad \tau^\alpha = 0 \quad \text{for all} \quad 1 \leq \alpha \leq n. \]

The Webster pseudo Ricci curvature \(R_{\alpha\beta} \) and pseudo scalar curvature \(R \) are defined as follows:
\[R_{\alpha\beta} = R_{\alpha\beta\rho} = \sum_{\rho=1}^{n} R_{\alpha\beta\rho\tau}, \quad R = R_{\alpha}^\alpha = \sum_{\alpha=1}^{n} R_{\alpha\tau}. \]

By (2.5)–(2.7), one has
\[d\omega^\alpha_{\beta} - \omega^\gamma_{\beta} \wedge \omega^\alpha_{\gamma} = R^\beta_{\alpha \rho} \wedge \theta^\rho + \Lambda^\beta_{\alpha \tau}, \]
where
\[\Lambda^\beta_{\alpha \tau} = \lambda^\beta_{\alpha \tau} \wedge \theta + i\theta^\beta \wedge \tau^\alpha - i\tau^\beta \wedge \theta^\alpha. \]

Let
\[w^\alpha = \text{Re}(\theta^\alpha), \quad w^{n+\alpha} = \text{Im}(\theta^\alpha), \quad w^{2n+1} = \lambda^{-1} \theta, \quad 1 \leq \alpha \leq n. \]

Then the Riemannian metric defined by (1.7) on \(M \) can be written as follows:
\[h^\lambda = \sum_{j=1}^{2n+1} w^j \otimes w^j. \]

Proposition 2.1 For \(1 \leq \alpha, k \leq n \), let
\[w^\alpha_k = w^{n+\alpha}_{n+k} = \text{Re}(\omega^\alpha_k), \quad -w^\alpha_{n+k} = w^{n+k}_\alpha = \text{Im}(\omega^\alpha_k) + \frac{1}{\lambda} \delta^\alpha_k \theta, \]
\[-w^{2n+1}_\alpha = w^{2n+1}_{2n+1} = \lambda \text{Re}(\tau^\alpha) - \frac{1}{\lambda} w^{n+\alpha} \]
and
\[-w^{2n+1}_{n+\alpha} = w^{2n+1}_{2n+1} = \lambda \text{Im}(\tau^\alpha) + \frac{1}{\lambda} w^\alpha, \quad w^{2n+1}_{2n+1} = 0. \]

Then the following structural equations for \((M, h^\lambda) \) hold:
\[dw^i = \sum_{k=1}^{2n+1} w^k \wedge w^i_k, \quad w^i_i + w^j_j = 0, \quad 1 \leq i, j \leq 2n+1. \]
Proof. By the definitions of w^i_j from (2.16)—(2.18), one can easily see that $w^i_j + w^j_i = 0$ for $1 \leq i, j \leq 2n + 1$. We need only to verify that the first part of (2.19) holds. Since

$$\theta^\alpha = w^\alpha + i w^{n+\alpha} \quad \text{and} \quad d\theta^\alpha = \sum_{k=1}^{n} \theta^k \wedge \omega^\alpha_k + \theta \wedge \tau^\alpha$$

for $1 \leq \alpha \leq n$, one has

$$dw^\alpha = \sum_{k=1}^{n} \left[w^k \wedge \text{Re} (\omega^\alpha_k) - w^{n+k} \wedge \text{Im} (\omega^\alpha_k) \right] + \theta \wedge \text{Re} (\tau^\alpha)$$

$$= \sum_{k=1}^{n} \left[w^k \wedge \text{Re} (\omega^\alpha_k) - w^{n+k} \wedge \left(\text{Im} (\omega^\alpha_k) + \frac{\delta_{nk}}{\lambda^2} \theta \right) \right]$$

$$+ \theta \wedge \left(\text{Re} (\tau^\alpha) - \frac{w^{n+\alpha}}{\lambda^2} \right)$$

$$= \sum_{k=1}^{n} \left(w^k \wedge w^\alpha_k + w^{n+k} \wedge w^{\alpha}_{n+k} \right) + w^{2n+1} \wedge w^{\alpha}_{2n+1} \wedge$$

and

$$dw^{n+\alpha} = \sum_{k=1}^{n} \left[w^k \wedge \text{Im} (\omega^\alpha_k) + w^{n+k} \wedge \text{Re} (\omega^\alpha_k) \right] + \theta \wedge \text{Im} (\tau^\alpha)$$

$$= \sum_{k=1}^{n} \left[w^k \wedge \left(\text{Im} (\omega^\alpha_k) + \frac{\delta_{nk}}{\lambda^2} \theta \right) + w^{n+k} \wedge \text{Re} (\omega^\alpha_k) \right]$$

$$+ \theta \wedge \left(\text{Im} (\tau^\alpha) + \frac{w^\alpha}{\lambda^2} \right)$$

$$= \sum_{k=1}^{n} \left(w^k \wedge w^{n+\alpha}_k + w^{n+k} \wedge w^{n+\alpha}_{n+k} \right) + w^{2n+1} \wedge w^{n+\alpha}_{2n+1} \wedge$$

Notice that $\text{Im} (A_{\alpha\gamma}) = -\text{Im} (A_{\alpha\gamma})$ and $A_{\alpha\gamma} = A_{\gamma\alpha}$, one has

$$\text{Re} (\tau^\alpha) = \sum_{\gamma=1}^{n} \text{Re} (A_{\alpha\gamma}) w^\gamma - \sum_{\gamma=1}^{n} \text{Im} (A_{\alpha\gamma}) w^{n+\gamma},$$

$$\text{Im} (\tau^\alpha) = - \sum_{\gamma=1}^{n} \text{Im} (A_{\alpha\gamma}) w^\gamma - \sum_{\gamma=1}^{n} \text{Re} (A_{\alpha\gamma}) w^{n+\gamma},$$

and

$$\sum_{\alpha=1}^{n} w^\alpha \wedge \sum_{\gamma=1}^{n} A_{\alpha\gamma} w^\gamma = \sum_{\alpha=1}^{n} w^{n+\alpha} \wedge \sum_{\gamma=1}^{n} A_{\alpha\gamma} w^{n+\gamma} = 0.$$
Therefore,

\[
dw^{2n+1} = \frac{i}{\lambda} \sum_{\alpha=1}^{n} \theta^\alpha \wedge \theta^\sigma
\]

\[
= \frac{2}{\lambda} \sum_{\alpha=1}^{n} w^\alpha \wedge w^{n+\alpha}
\]

\[
= \frac{1}{\lambda} \sum_{\alpha=1}^{n} w^\alpha \wedge w^{n+\alpha} - \frac{1}{\lambda} \sum_{\alpha=1}^{n} w^{n+\alpha} \wedge w^\alpha
\]

\[
= \sum_{\alpha=1}^{n} w^\alpha \wedge \left(\frac{1}{\lambda} w^{n+\alpha} - \lambda \sum_{\gamma=1}^{n} \text{Re} (A_{\alpha\gamma}) w^n + \lambda \sum_{\gamma=1}^{n} \text{Im} (A_{\alpha\gamma}) w^{n+\gamma} \right)
\]

\[
- \sum_{\alpha=1}^{n} w^{n+\alpha} \wedge \left(\frac{1}{\lambda} w^\alpha - \lambda \sum_{\gamma=1}^{n} \text{Re} (A_{\alpha\gamma}) w^n + \lambda \sum_{\gamma=1}^{n} \text{Im} (A_{\alpha\gamma}) w^\gamma \right)
\]

\[
= \sum_{\alpha=1}^{n} w^\alpha \wedge \left(\frac{w^{n+\alpha}}{\lambda} \right) - \sum_{\alpha=1}^{n} w^{n+\alpha} \wedge \left(\frac{w^\alpha}{\lambda} \right)
\]

\[
= \sum_{\alpha=1}^{n} \left(w^\alpha \wedge w_2^{2n+1} + w^{n+\alpha} \wedge w_n^{2n+1} \right) + w_2^{2n+1} \wedge w_n^{2n+1}.
\]

Therefore, (2.19) holds and the proof of the proposition is complete.

On the Riemannian manifold \((M, h^\lambda)\), one has the structural equations (2.19) and the following:

\[
dw^i - \sum_{k=1}^{2n+1} w_k^i \wedge w_\ell = \frac{1}{2} \sum_{k,\ell=1}^{2n+1} R^\lambda_{ijk\ell} w^k \wedge w_\ell, \quad 1 \leq i, j \leq 2n + 1,
\]

where \(R^\lambda_{ijk\ell}\) is the Riemannian curvature tensor. Furthermore, the Riemannian Ricci curvature for \((M, h^\lambda)\) is given as follows:

\[
R^\lambda_{jk} = (h^\lambda)^{\ell\delta} R^\lambda_{j\ell k\delta} = \sum_{\ell=1}^{2n+1} R_{j\ell k\ell}^\lambda + R_{2n+1+j 2n+1}^\lambda.
\]

Next we calculate the curvatures \(R^\lambda_{ij}\) in terms of \(R_{\alpha\bar{\beta}}\). For simplicity, we introduce the following two-forms:

\[
\frac{1}{2} F_{k,\alpha}(\lambda, \tau) = \text{Re} (\tau^k \wedge (-\lambda^2 \text{Re} (\tau^\alpha) + w^{n+\alpha}) + w^{n+k} \wedge \text{Re} (\tau^\alpha) - \text{Re} (A_{k\bar{\alpha}}))
\]

\[
\frac{1}{2} F_{k,n+\alpha}(\lambda, \tau) = -\text{Re} (\tau^k \wedge (\lambda^2 \text{Im} (\tau^\alpha) + w^\alpha) + w^{n+k} \wedge \text{Im} (\tau^\alpha) - \text{Im} (A_{k\bar{\alpha}}))
\]

7
and

\[
\frac{1}{2} F_{n+k,n+\alpha}(\lambda, \tau) = -\text{Im} (\tau^h) \wedge (\lambda^2 \text{Im} (\tau^\alpha) + w^\alpha) - w^k \wedge \text{Im} (\tau^\alpha) - \text{Re} (\Lambda_{k,\tau})
\]

In particular, by (2.10) and (2.13)

\[
F_{k,\alpha}(\lambda, \tau) = F_{n+k,n+\alpha}(\lambda, \tau) = F_{n+k,n+\alpha}(\lambda, \tau) = 0 \text{ if } \tau = (\tau^1, \ldots, \tau^n) = 0.
\]

Let us first build up the relation between \(R_{ijpq}^\lambda w^p \wedge w^q\) and \(R_{\alpha\beta\gamma\delta}^\theta \wedge \theta^\gamma\).

Proposition 2.2 For \(1 \leq \alpha, k \leq n\), we have

\[
2n+1 \sum_{p,q=1}^{2n+1} R_{k\alpha pq}^\lambda w^p \wedge w^q = 2\text{Re} \left(\sum_{\rho,\sigma=1}^{n} R_{k\rho\sigma \rho}^\lambda \theta^\rho \wedge \theta^\sigma \right) + \frac{2}{\lambda^2} w^{n+k} \wedge w^{n+\alpha} - F_{k,\alpha}(\lambda, \tau),
\]

and

\[
2n+1 \sum_{p,q=1}^{2n+1} R_{n+k n+\alpha pq}^\lambda w^p \wedge w^q = 2\text{Im} \left(\sum_{\rho,\sigma=1}^{n} R_{k\rho\sigma \rho}^\lambda \theta^\rho \wedge \theta^\sigma \right) + \frac{2}{\lambda^2} w^{n+k} \wedge w^{n+\alpha} - F_{n+k,n+\alpha}(\lambda, \tau).
\]

Proof. By the definitions of \(w^\ell\) in (2.14) and \(w^\ell_i\) given by (2.16), and the fact that \(\text{Im} (\omega^\ell_{\alpha}) = \text{Im} (\omega^\ell_{\beta})\), one has

\[
2n \sum_{\ell=1}^{2n} w^{\ell}_{k} \wedge w^{\ell}_{\alpha} = \sum_{\ell=1}^{n} \text{Re} (\omega^\ell_{k}) \wedge \text{Re} (\omega^\ell_{\alpha}) - \sum_{\ell=1}^{n} \left(\text{Im} (\omega^\ell_{k}) + \frac{\delta_{\ell k}}{\lambda^2} \theta \right) \wedge \left(\text{Im} (\omega^\ell_{\alpha}) + \frac{\delta_{\ell \alpha}}{\lambda^2} \theta \right)
\]

\[
= \sum_{\ell=1}^{n} \text{Re} (\omega^\ell_{k}) \wedge \text{Re} (\omega^\ell_{\alpha}) - \sum_{\ell=1}^{n} \text{Im} (\omega^\ell_{k}) \wedge \text{Im} (\omega^\ell_{\alpha})
\]

\[
= \text{Re} \sum_{\ell=1}^{n} (\omega^\ell_{k} \wedge \omega^\ell_{\alpha})
\]

By (2.14), (2.16) and similar computations, one has

\[
2n \sum_{\ell=1}^{2n} w^{\ell}_{k} \wedge w^{n+\alpha}_{\ell} = \text{Im} \sum_{\ell=1}^{n} (\omega^\ell_{k} \wedge \omega^\ell_{\alpha})
\]

(2.30)
and
\[
(2.31) \quad \sum_{\ell=1}^{2n} w_{n+k}^\ell \wedge w_{\ell}^{\alpha} = \text{Re} \sum_{\ell=1}^{n} (\omega_k^\ell \wedge \omega_{\ell}^\alpha).
\]

By (2.17) and (2.25), one has
\[
(2.32) \quad w_{2n+1}^k \wedge w_{2n+1}^\alpha
= -\left(\text{Re} (\tau^k) - \frac{1}{\lambda} w_{2n+1}^k \right) \wedge \left(\frac{1}{\lambda} \text{Re} (\tau^\alpha) - \frac{1}{\lambda} w_{2n+1}^\alpha \right)
\]
\[
= - \frac{1}{\lambda^2} w_{2n+1}^k \wedge w_{2n+1}^\alpha + \text{Re} (\tau^k) \wedge \left(\lambda^2 \text{Re} (\tau^\alpha) + w_{2n+1}^\alpha \right)
\]
\[
+ w_{2n+1}^k \wedge \text{Re} (\tau^\alpha)
\]
\[
= - \frac{1}{\lambda^2} w_{2n+1}^k \wedge w_{2n+1}^\alpha + \frac{1}{2} F_{k, \alpha}(\lambda, \tau) + \text{Re} (\Lambda k \pi),
\]
by (2.17) and (2.26), one has
\[
(2.33) \quad w_{2n+1}^k \wedge w_{2n+1}^\alpha
= -\left(\lambda \text{Im} (\tau^k) - \frac{1}{\lambda} w_{2n+1}^k \right) \wedge \left(\lambda^2 \text{Im} (\tau^\alpha) + w_{2n+1}^\alpha \right)
\]
\[
= \frac{1}{\lambda^2} w_{2n+1}^k \wedge w_{2n+1}^\alpha - \text{Re} (\tau^k) \wedge \left(\lambda^2 \text{Im} (\tau^\alpha) + w_{2n+1}^\alpha \right) + w_{2n+1}^k \wedge \text{Im} (\tau^\alpha)
\]
\[
= \frac{1}{\lambda^2} w_{2n+1}^k \wedge w_{2n+1}^\alpha + \frac{1}{2} F_{k, n+\alpha}(\lambda, \tau) + \text{Im} (\Lambda k \pi)
\]
and by (2.17) and (2.27), one has
\[
(2.34) \quad w_{n+k}^\alpha \wedge w_{2n+1}^\alpha
= -\left(\lambda \text{Im} (\tau^k) + \frac{1}{\lambda} w_{n+k}^k \right) \wedge \left(\lambda \text{Im} (\tau^\alpha) + \frac{1}{\lambda} w_{n+k}^\alpha \right)
\]
\[
= - \frac{1}{\lambda^2} w_{n+k}^k \wedge w_{n+k}^\alpha - \text{Im} (\tau^k) \wedge \left(\lambda^2 \text{Im} (\tau^\alpha) + w_{n+k}^\alpha \right) - w_{n+k}^k \wedge \text{Im} (\tau^\alpha)
\]
\[
= - \frac{1}{\lambda^2} w_{n+k}^k \wedge w_{n+k}^\alpha + \frac{1}{2} F_{n+k, n+\alpha}(\lambda, \tau) + \text{Re} (\Lambda k \pi).
\]

For $1 \leq k, \alpha \leq n$, by (2.23), (2.29), (2.32) and (2.12), one has
\[
(2.35) \quad \sum_{p,q=1}^{2n+1} R_{k, \alpha pq}^\lambda w^p \wedge w^q
= 2 \left(dw_{k}^\alpha - \sum_{\ell=1}^{2n+1} w_{k}^\ell \wedge w_{\ell}^\alpha \right)
\]

9
\[
\begin{align*}
&= 2\text{Re} \left(d\omega_k^\alpha - \sum_{\ell=1}^n \omega_k^\ell \wedge \omega_k^\alpha \right) + \frac{2}{\lambda^2} w^{n+k} \wedge w^{n+\alpha} - F_{k,\alpha}(\lambda, \tau) - 2\text{Re} (\Lambda_{k\alpha}) \\
&= 2\text{Re} \left(\sum_{\rho,\sigma=1}^n R_{k\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma \right) + \frac{2}{\lambda^2} w^{n+k} \wedge w^{n+\alpha} - F_{k,\alpha}(\lambda, \tau)
\end{align*}
\]
and by (2.23), (2.16), (2.30), (2.33), (2.12) and (2.13),

\[
(2.36) \quad \sum_{p,q=1}^{2n+1} R_{k,n+\alpha}^{\lambda p q} w^p \wedge w^q
\]

\[
= 2 \left(dw^{n+\alpha} - \sum_{p=1}^{2n+1} w_k^p \wedge w_p^{n+\alpha} \right)
\]

\[
= 2\text{Im} \left(d\omega_k^\alpha - \sum_{\ell=1}^n \omega_k^\ell \wedge \omega_k^\alpha \right)
\]

\[
+ \frac{2}{\lambda^2} \delta_{k\alpha} d\theta - \frac{2}{\lambda^2} w^{n+k} \wedge w^{\alpha} - F_{k,n+\alpha}(\lambda, \tau) - 2\text{Im} (\Lambda_{k\alpha})
\]

\[
= 2\text{Im} \left(\sum_{\rho,\sigma=1}^n R_{k\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma \right) + \frac{2}{\lambda^2} \delta_{k\alpha} d\theta - \frac{2}{\lambda^2} w^{n+k} \wedge w^{\alpha} - F_{k,n+\alpha}(\lambda, \tau).
\]

Finally, for \(1 \leq k, \alpha \leq n\), by (2.23), (2.31), (2.34), (2.12) and (2.13), we have

\[
(2.37) \quad \sum_{p,q=1}^{2n+1} R_{n+k,n+\alpha}^{\lambda p q} w^p \wedge w^q
\]

\[
= 2 \left(dw^{n+\alpha} - \sum_{p=1}^{2n+1} w_k^p \wedge w_p^{n+\alpha} \right)
\]

\[
= 2\text{Re} \left(d\omega_k^\alpha - \sum_{\ell=1}^n \omega_k^\ell \wedge \omega_k^\alpha \right) + \frac{2}{\lambda^2} w^k \wedge w^{\alpha} - F_{n+k,n+\alpha}(\lambda, \tau) - 2\text{Re} (\Lambda_{k\alpha})
\]

\[
= 2\text{Re} \left(\sum_{\rho,\sigma=1}^n R_{k\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma \right) + \frac{2}{\lambda^2} w^k \wedge w^{\alpha} - F_{n+k,n+\alpha}(\lambda, \tau).
\]

Therefore, by (3.35)–(3.37), the proof of the proposition is complete. \(\Box\)

In order to compare \(R_{ijk}^\lambda\) with \(R_{\alpha\beta\gamma\delta}\), we write \(R_{k\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma\) in terms of \(w^j\). Notice that

\[
(2.38) \quad \sum_{\rho,\sigma=1}^n R_{k\alpha\rho\sigma} \theta^\rho \wedge \theta^\sigma
\]

10
\[
\sum_{\rho, \sigma = 1}^n R_{k\pi \rho \sigma} \left[(w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) + i(-w^\rho \wedge w^{n+\sigma} + w^{n+\rho} \wedge w^\sigma) \right]
\]

\[
= \sum_{\rho, \sigma = 1}^n \left[\text{Re} (R_{k\pi \rho \sigma})(w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) - \text{Im} (R_{k\pi \rho \sigma})(-w^\rho \wedge w^{n+\sigma} + w^{n+\rho} \wedge w^\sigma) \right] + i \sum_{\rho, \sigma = 1}^n \left[\text{Im} (R_{k\pi \rho \sigma})(w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) + \text{Re} (R_{k\pi \rho \sigma})(-w^\rho \wedge w^{n+\sigma} + w^{n+\rho} \wedge w^\sigma) \right]
\]

\[
= \sum_{\rho, \sigma = 1}^n \frac{1}{2} \left(\text{Re} (R_{k\pi \rho \sigma}) - \text{Re} (R_{k\pi \sigma \rho}) \right) (w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) + \sum_{\rho, \sigma = 1}^n \left(\text{Im} (R_{k\pi \rho \sigma}) + \text{Im} (R_{k\pi \sigma \rho}) \right) w^\rho \wedge w^{n+\sigma} + \frac{i}{2} \sum_{\rho, \sigma = 1}^n \left(\text{Im} (R_{k\pi \rho \sigma}) - \text{Im} (R_{k\pi \sigma \rho}) \right) (w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) - i \sum_{\rho, \sigma = 1}^n \left(\text{Re} (R_{k\pi \rho \sigma}) + \text{Re} (R_{k\pi \sigma \rho}) \right) w^\rho \wedge w^{n+\sigma}.
\]

For \(1 \leq i, j, p, q \leq 2n + 1\), we write

\[
(2.39) \quad F_{i,j}(\lambda, \tau) := \sum_{p, q = 1}^{2n+1} E_{ijpq}(\lambda) w^p \wedge w^q \quad \text{with} \quad E_{ijpq} = -E_{jipq} = E_{jiqp}.
\]

Then by Proposition 2.2 with (2.35), (2.38) and (2.39), for \(1 \leq k, \alpha \leq n\), we have

\[
(2.40) \quad \sum_{p, q = 1}^{2n+1} \frac{\lambda^k}{\lambda^2} w^p \wedge w^q = \sum_{\rho, \sigma = 1}^n \left[\text{Re} (R_{k\pi \rho \sigma}) - \text{Re} (R_{k\pi \sigma \rho}) \right] (w^\rho \wedge w^\sigma + w^{n+\rho} \wedge w^{n+\sigma}) + \sum_{\rho, \sigma = 1}^n \left(\text{Im} (R_{k\pi \rho \sigma}) + \text{Im} (R_{k\pi \sigma \rho}) \right) w^\rho \wedge w^{n+\sigma} + \frac{2}{\lambda^2} w^{n+k} \wedge w^{n+\alpha} - F_{k,\alpha}(\lambda, \tau).
\]
For $1 \leq k, \alpha, p, q \leq n$, (2.40) gives

(2.40.1) \[R^\lambda_{k, p, q} = \text{Re} \left(R_{k, p, q} - R_{k, q, p} \right) + E_{k, p, q}, \]

(2.40.2) \[R^\lambda_{k, p, n+q} = \text{Im} \left(R_{k, p, q} + R_{k, q, p} \right) + E_{k, p, n+q} \]

and

(2.40.3) \[R^\lambda_{k, \alpha, n+p, n+q} = \text{Re} \left(R_{k, \alpha, q} - R_{k, \alpha, p} \right) + \frac{\delta_{pk} \delta_{qa} - \delta_{pa} \delta_{kq}}{\lambda^2} + E_{k, \alpha, n+p, n+q}. \]

By (2.36), (2.38) and (2.39), one has

(2.41) \[\sum_{p, q=1}^{2n+1} R^\lambda_{k, p, q} w^p \wedge w^q = \sum_{p, q=1}^{n} \left(\text{Re} \left(R_{k, p, q} \right) - \text{Re} \left(R_{k, q, p} \right) \right) \left(w^p \wedge w^q + w^{n+p} \wedge w^{n+q} \right) + 2 \sum_{\rho, \sigma=1}^{n} \left(\text{Im} \left(R_{k, \rho, \sigma} \right) + \text{Im} \left(R_{k, \sigma, \rho} \right) \right) w^\rho \wedge w^\sigma + 2 \frac{\delta_{pk} \delta_{qa} - \delta_{pa} \delta_{kq}}{\lambda^2} + E_{k, p, q}. \]

Thus, for $1 \leq k, \alpha, p, q \leq n$, one has

(2.41.1) \[R^\lambda_{k, n+\alpha, p, q} = \text{Im} \left(R_{k, p, q} - R_{k, q, p} \right) + E_{k, n+\alpha, p, q}, \]

(2.41.2) \[R^\lambda_{k, n+\alpha, n+p, n+q} = \text{Im} \left(R_{k, p, q} - R_{k, q, p} \right) + E_{k, n+\alpha, n+p, n+q}, \]

(2.41.3) \[R^\lambda_{k, n+\alpha, n+p, n+q} = -\text{Re} \left(R_{k, p, q} + R_{k, q, p} \right) + 2 \delta_{k\alpha} \frac{\delta_{pq}}{\lambda^2} + \frac{\delta_{p\alpha}}{\lambda^2} \delta_{kq} + E_{k, n+\alpha, n+p, n+q}, \]

and

(2.41.4) \[R^\lambda_{k, n+\alpha, n+p, n+q} = \text{Re} \left(R_{k, p, q} + R_{k, q, p} \right) - 2 \delta_{k\alpha} \frac{\delta_{pq}}{\lambda^2} - \frac{\delta_{p\alpha}}{\lambda^2} \delta_{kq} + E_{k, n+\alpha, n+p, n+q}. \]

Furthermore, by (2.37) and (2.38)

(2.42) \[\sum_{p, q=1}^{2n+1} R^\lambda_{k, n+k, p, q} w^p \wedge w^q = \sum_{p, q=1}^{n} \left(\text{Re} \left(R_{k, p, q} \right) - \text{Re} \left(R_{k, q, p} \right) \right) \left(w^p \wedge w^q + w^{n+p} \wedge w^{n+q} \right) + 2 \sum_{\rho, \sigma=1}^{n} \left(\text{Im} \left(R_{k, \rho, \sigma} \right) + \text{Im} \left(R_{k, \sigma, \rho} \right) \right) w^\rho \wedge w^\sigma + \frac{2}{\lambda^2} w^k \wedge w^{\alpha} - F_{n+k, n+\alpha}(\lambda, \tau). \]
For $1 \leq p, q \leq n$, (2.42) and (2.39) imply that

\[
R_{n+k+n+α,n+p+q}^\lambda = \text{Re} \left((R_{k+q} - R_{k+p}) + E_{n+k+n+α,n+p+q} \right)
\]

and

\[
R_{n+k+n+α,p+q}^\lambda = \text{Re} \left((R_{k+q} - R_{k+p}) + \frac{δ_{pk}δ_{aq} - δ_{po}δ_{kq}}{λ^2} + E_{n+k+n+α,p+q} \right)
\]

and

\[
R_{n+k+n+α,p+q}^\lambda = \text{Im} \left((R_{k+q} + R_{k+p}) + E_{n+k+n+α,p+q} \right).
\]

Next we will derive a formula for $R_{2n+1\alpha,pq}^\lambda$ in terms of R_{k+q}^λ and $τ^α$. By (2.17), one has

\[
dw_{2n+1}^α = \frac{1}{λ} \text{Im} dθ^α + λ \text{Re} dτ^α
\]

Using the fact that $\text{Im}(ω^α_β) = \text{Im}(ω^α_β)$ and (2.16)–(2.18), one has

\[
\sum_{ℓ=1}^{2n} w_{2n+1}^α \wedge w_ℓ^α = \sum_{ℓ=1}^n w_{2n+1}^α \wedge w_ℓ^α + \sum_{ℓ=1}^n w_{2n+1}^α \wedge w_ℓ^α
\]

\[
= \sum_{ℓ=1}^n \left[λ \text{Re}(τ^β) - λ^{-1} w^{n+β} \wedge (\text{Im}(ω_β^α) - λ^{-2} δ_{nα,δ_{nα}}θ) \right] \wedge (\text{Im}(ω_β^α) - λ^{-2} δ_{nα,δ_{nα}}θ)
\]

\[
- \frac{1}{λ} \sum_{ℓ=1}^n w^{n+β} \wedge (\text{Im}(ω_β^α) - λ^{-2} δ_{nα,δ_{nα}}θ) \wedge (\text{Im}(ω_β^α) - λ^{-2} δ_{nα,δ_{nα}}θ)
\]

Combining the above two identities and (2.23), one has

\[
R_{2n+1\alpha,pq}^\lambda w^p \wedge w^q = 2 \left(dw_{2n+1}^α - \sum_{ℓ=1}^{2n} w_{2n+1}^α \wedge w_ℓ^α \right)
\]
\[E_{2n+1, \alpha p q} = -E_{\alpha 2n+1 pq} = E_{\alpha 2n+1 qp} \text{ are chosen so that} \]

\[
\sum_{p,q=1}^{2n+1} E_{2n+1, \alpha p q} w^p \wedge w^q,
\]

where \(E_{2n+1, \alpha p q} = -E_{\alpha 2n+1 pq} = E_{\alpha 2n+1 qp} \) are chosen so that

\[
(2.44) \quad \sum_{p,q=1}^{2n+1} E_{2n+1, \alpha p q} w^p \wedge w^q = 2 \lambda \text{Re} d\tau^\alpha - 2 \lambda \sum_{\ell=1}^{n} \text{Re} (\tau^\ell) \wedge \text{Re} (\omega^\alpha_{\ell}) + 2 \lambda \sum_{\ell=1}^{n} \text{Im} (\tau^\ell) \wedge \text{Im} (\omega^\alpha_{\ell})
\]

\[
+ 4 \text{Im} (\tau^\alpha) \wedge w^{2n+1}
\]

\[
= 2 \lambda \text{Re} d\tau^\alpha - 2 \lambda \sum_{\ell=1}^{n} \text{Re} (\tau^\ell \wedge \omega^\alpha_{\ell}) + 4 \text{Im} (\tau^\alpha) \wedge w^{2n+1}.
\]

Therefore, with the suitable choice of \(E_{2n+1, \alpha p q} \) and \(1 \leq \alpha \leq n \),

\[
(2.45) \quad R^\lambda_{2n+1, \alpha p q} = \frac{\delta_{\alpha p} \delta_{q 2n+1}}{\lambda^2} + E_{2n+1, \alpha p q} = -R^\lambda_{2n+1, \alpha q p}, \quad 1 \leq p, q \leq 2n+1.
\]

Similarly, by (2.16)–(2.18)

\[
(2.46) \quad R^\lambda_{2n+1, n+\alpha p q} w^p \wedge w^q
\]

\[
= 2 \left(dw^{n+\alpha}_{2n+1} - \sum_{\ell=1}^{2n} w^\ell_{2n+1} \wedge w^n_{\ell+\alpha} \right)
\]

\[
= \frac{2}{\lambda} \text{Re} (d\theta^\alpha) + 2 \lambda \text{Im} (\tau^\alpha)
\]

\[
+ 2 \sum_{\ell=1}^{n} \left(\frac{1}{\lambda} w^{n+\ell} - \lambda \text{Re} (\tau^\ell) \right) \wedge \left(\text{Im} (\omega^\alpha_{\ell}) + \frac{1}{\lambda^2} \delta_{\alpha \ell} \theta \right)
\]

\[
- 2 \sum_{\ell=1}^{n} \left(\frac{1}{\lambda} w^\ell + \lambda \text{Im} (\tau^\ell) \right) \wedge \text{Re} (\omega^\alpha_{\ell})
\]

\[
= \frac{2}{\lambda} \sum_{\ell=1}^{n} \left(w^\ell \wedge \text{Re} (\omega^\alpha_{\ell}) - w^{n+\ell} \wedge \text{Im} (\omega^\alpha_{\ell}) \right) - 2 \text{Re} (\tau^\alpha) \wedge w^{2n+1}
\]

\[
+ 2 \lambda \text{Im} (d\tau^\alpha) + 2 \frac{\lambda^2}{\lambda^2} \sum_{\ell=1}^{n} \delta_{\alpha \ell} w^{n+\ell} \wedge w^{2n+1}
\]

\[
+ \frac{2}{\lambda} \sum_{\ell=1}^{n} w^{n+\ell} \wedge \text{Im} (\omega^\alpha_{\ell}) - 2 \lambda \sum_{\ell=1}^{n} \text{Re} (\tau^\ell) \wedge \text{Im} (\omega^\alpha_{\ell}) - 2 \text{Re} (\tau^\alpha) \wedge w^{2n+1}
\]

\[
- \frac{2}{\lambda} \sum_{\ell=1}^{n} w^\ell \wedge \text{Re} (\omega^\alpha_{\ell}) - 2 \lambda \sum_{\ell=1}^{n} \text{Im} (\tau^\ell) \wedge \text{Re} (\omega^\alpha_{\ell})
\]

14
\[\begin{align*}
= & -4\text{Re}(\tau^\alpha) \wedge w^{2n+1} + 2\lambda \text{Im}(d\tau^\alpha) - 2\lambda \sum_{\ell=1}^{n} \text{Im}(\tau^\ell \wedge \omega_\ell^\alpha) \\
+ & \frac{2}{\lambda^2} \sum_{\ell=1}^{n} \delta_\alpha \xi w^{n+\ell} \wedge w^{2n+1} \\
= & \sum_{p,q=1}^{2n+1} E_{2n+1+\alpha \, p \, q} w^p \wedge w^q + \frac{2}{\lambda^2} \sum_{\ell=1}^{n} \delta_\alpha \xi w^{n+\ell} \wedge w^{2n+1},
\end{align*} \]

where \(E_{2n+1+\alpha \, p \, q} = -E_{n+\alpha \, 2n+1 \, p \, q} = E_{\alpha \, 2n+1 \, q \, p} \) are chosen so that

\[\sum_{p,q=1}^{2n+1} E_{2n+1+\alpha \, p \, q} w^p \wedge w^q = 2\lambda \text{Im}(d\tau^\alpha) - 4\text{Re}(\tau^\alpha) \wedge w^{2n+1} - 2\lambda \sum_{\ell=1}^{n} \text{Im}(\tau^\ell \wedge \omega_\ell^\alpha). \]

Therefore, for \(1 \leq \alpha \leq n \) and \(1 \leq p, q \leq 2n + 1 \), one has

\[\sum_{p,q=1}^{2n+1} E_{2n+1+\alpha \, p \, q} w^p \wedge w^q = 2\lambda \text{Im}(d\tau^\alpha) - 4\text{Re}(\tau^\alpha) \wedge w^{2n+1} - 2\lambda \sum_{\ell=1}^{n} \text{Im}(\tau^\ell \wedge \omega_\ell^\alpha). \]

As a summary of (2.40), (2.40.1)–(2.40.3), (2.41), (2.41.1)–(2.41.4), (2.42), (2.42.1)–(2.42.3), (2.43), (2.45), one can write them as the following proposition:

Proposition 2.3 If \((M^{2n+1}, \theta)\) is a strictly pseudoconvex pseudo-Hermitian manifold in the sense of Webster [20], then for \(1 \leq k, \alpha, m, \ell \leq n \) and for \(1 \leq p, q \leq 2n + 1 \)

\[\begin{align*}
(2.49.1) & \quad R^\lambda_{k \alpha m \ell} = \text{Re}(R_{k \overline{\alpha m} \ell} - R_{k \overline{\alpha m} \ell}) + E_{k \alpha m \ell}, \\
(2.49.2) & \quad R^\lambda_{k \alpha m n + \ell} = \text{Im}(R_{k \overline{\alpha m} \ell} + R_{k \overline{\alpha m} \ell}) + E_{k \alpha m n + \ell}, \\
(2.49.3) & \quad R^\lambda_{k \alpha n \alpha m \ell} = \text{Re}(R_{k \overline{\alpha \alpha m} \ell}) + \frac{1}{\lambda^2} (\delta_{m \alpha} \delta_{\ell \alpha} - \delta_{m \alpha} \delta_{\ell k}) + E_{k \alpha n + \alpha m \ell}, \\
(2.49.4) & \quad R^\lambda_{k n + \alpha m \ell} = \text{Im}(R_{k \overline{\alpha \alpha m} \ell}) + E_{k n + \alpha m \ell}, \\
(2.49.5) & \quad R^\lambda_{k n + \alpha m + m \ell} = \text{Re}(R_{k \overline{\alpha \alpha m} \ell} + R_{k \overline{\alpha \alpha m} \ell}) + \frac{1}{\lambda^2} (\delta_{m \alpha} \delta_{\ell k} + 2\delta_{k \alpha} \delta_{m \ell}) + E_{k n + \alpha m + m \ell}, \\
(2.49.6) & \quad R^\lambda_{k n + \alpha m + n \ell} = -\text{Re}(R_{k \overline{\alpha m} \ell} + R_{k \overline{\alpha m} \ell}) + \frac{1}{\lambda^2} (\delta_{m \alpha} \delta_{\ell k} + 2\delta_{k \alpha} \delta_{m \ell}) + E_{k n + \alpha m + n \ell},
\end{align*} \]
(2.49.7) \[R_{n+k+n+\alpha m \ell} = \text{Re}(R_{k\pi m}) - \text{Re}(R_{k\pi m^\alpha}) \]
\[+ \frac{1}{\lambda^2}(\delta_{km} \delta_{\ell\alpha} - \delta_{m\alpha} \delta_{k\ell}) + E_{n+k+n+\alpha m \ell}, \]

(2.49.8) \[R_{n+k+n+\alpha n+\ell} = \text{Im}(R_{k\pi m}) + \text{Im}(R_{k\pi m^\alpha}) + E_{n+k+n+\alpha n+\ell}, \]

(2.49.9) \[R_{n+k+n+m+n+\ell} = \text{Re}(R_{k\pi m}) - \text{Re}(R_{k\pi m^\alpha}) + E_{n+k+n+m+n+\ell}, \]

(2.49.10) \[R_{2n+1 \alpha pq} = R_{2n+1 \alpha n+p q} = \frac{1}{\lambda^2} \delta_{p\alpha} \delta_{q 2n+1} + E_{2n+1 \alpha p q}, \]

(2.49.11) \[R_{n+k+n+2n+1 p} = E_{n+k+n+2n+1 p}, \quad R_{k\alpha 2n+1 p} = E_{k\alpha 2n+1 p}, \]

and

(2.49.12) \[R_{k\alpha 2n+1 p} = E_{k\alpha 2n+1 p}. \]

Let

(2.50.1) \[E_{k\ell} = \sum_{p=1}^{2n+1} E_{p k\ell p}, \quad 1 \leq k, \ell \leq 2n + 1. \]

Then by (2.10), (2.13), (2.28) and (2.39),

(2.50.2) \[E_{k\ell} = 0 \quad \text{if} \quad \tau = (\tau^1, \cdots, \tau^n) = 0, \quad 1 \leq k, \ell \leq 2n + 1. \]

In general, one has the following proposition.

Proposition 2.4 *With the notation above, for \(1 \leq \alpha, \ell \leq n \), one has*

(2.51.1) \[R_{\alpha \ell} = 2\text{Re}(R_{\alpha \ell}) - \frac{2}{\lambda^2} \delta_{\alpha \ell} + E_{\alpha \ell}, \quad R_{n+\alpha \ell} = 2\text{Im}(R_{\pi \alpha \ell}) + E_{n+\alpha \ell}, \]

(2.51.2) \[R_{2n+1 \ell} = E_{2n+1 \ell}, \quad R_{2n+1 n+\ell} = E_{2n+1 n+\ell}, \]

(2.51.3) \[R_{n+\alpha n+\ell} = 2 \sum_{k=1}^{n} \text{Re}(R_{k\pi m}) - \frac{2}{\lambda^2} \delta_{\alpha \ell} + E_{n+\alpha n+\ell}, \]

and

(2.51.4) \[R_{2n+1 2n+1} = \sum_{m=1}^{2n} R_{mn 2n+1} = \frac{2n}{\lambda^2} + E_{2n+1 2n+1}. \]
Proof. By (2.40.1), (2.41.3), (2.45) and (2.8), for $1 \leq k, \ell \leq n$, we have

$$R^\lambda_{\alpha \ell} = \sum_{k=1}^{2n} R^\lambda_{k \alpha k \ell k} + R^\lambda_{2n+1 \alpha 2n+1 \ell}$$

$$= \sum_{k=1}^{n} R^\lambda_{k \alpha k \ell k} - \sum_{k=1}^{n} R^\lambda_{\alpha n+k \ell n+k} + R^\lambda_{2n+1 \alpha 2n+1 \ell}$$

$$= \text{Re} \sum_{k=1}^{n} (R^\lambda_{k \alpha k \ell k} - R^\lambda_{\alpha k \ell k}) + \text{Re} \sum_{k=1}^{n} (R^\lambda_{\alpha k \ell k} + R^\lambda_{\alpha \ell k k})$$

$$- \frac{1}{\lambda^2} \sum_{k=1}^{n} (2\delta_{\alpha k} \delta_{k \ell} + \delta_{k \ell} \delta_{k \alpha}) + \frac{1}{\lambda^2} \delta_{\alpha \ell} + E_{\alpha \ell}$$

$$= 2\text{Re} (R^\lambda_{\alpha \ell}) - \frac{2}{\lambda^2} \delta_{\alpha \ell} + E_{\alpha \ell}.$$

By (2.41.1), (2.42.3), (2.48) and (2.8), one has

$$R^\lambda_{n+\alpha \ell} = \sum_{k=1}^{n} R^\lambda_{k n+\alpha \ell k} + \sum_{k=1}^{n} R^\lambda_{n+k n+\alpha \ell n+k} + R^\lambda_{2n+1 n+\alpha \ell 2n+1}$$

$$= \sum_{k=1}^{n} \left(\text{Im} (R^\lambda_{k \alpha k \ell k}) - \text{Im} (R^\lambda_{k \alpha k \ell}) \right) + \sum_{k=1}^{n} \left(\text{Im} (R^\lambda_{\alpha k \ell k}) + \text{Im} (R^\lambda_{\alpha k \ell}) \right)$$

$$+ 0 + E_{n+\alpha \ell}$$

$$= \sum_{k=1}^{n} \text{Im} (R^\lambda_{k \alpha k \ell k} + R^\lambda_{k \alpha k \ell}) + E_{n+\alpha \ell}$$

$$= 2\text{Im} (R^\lambda_{\alpha \ell}) + E_{n+\alpha \ell}.$$

Therefore, (2.51.1) is proved.

By (2.45) and (2.48), one has

$$R^\lambda_{2n+1 \ell} = \sum_{k=1}^{n} R^\lambda_{k 2n+1 \ell k} + \sum_{k=1}^{n} R^\lambda_{n+k 2n+1 \ell n+k}$$

$$= - \sum_{k=1}^{n} R^\lambda_{2n+1 \ell k k} - \sum_{k=1}^{n} R^\lambda_{2n+1 n+k \ell n+k}$$

$$= 0 + 0 + E_{2n+1 \ell}$$

and

$$R^\lambda_{2n+1 n+\ell} = \sum_{k=1}^{n} R^\lambda_{k 2n+1 n+\ell k} + \sum_{k=1}^{n} R^\lambda_{n+k 2n+1 n+\ell n+k}$$

$$= \sum_{k=1}^{n} R^\lambda_{2n+1 k k n+\ell} - \sum_{k=1}^{n} R^\lambda_{2n+1 n+k n+\ell n+k}$$

$$= 0 + 0 + E_{2n+1 n+\ell}$$

17
and the proof of (2.51.2) is complete.

Next we prove (2.51.3). By (2.41.4), (2.42.1), (2.48) and (2.8), one has

\[
R_{\lambda}^n + \alpha n + \ell = \sum_{k=1}^{n} R_{\lambda}^k n + \alpha n + \ell + R_{2n+1}^\lambda n + \alpha n + \ell 2n+1 = \sum_{k=1}^{n} \left[\Re(R_{k}^\alpha \delta_{\ell k}) - \frac{3}{\lambda^2} \delta_{k \alpha} \delta_{\ell k} + \Re(R_{k}^\alpha \delta_{\ell k}) \right] + \frac{1}{\lambda^2} \delta_{n + \alpha n + \ell} + E_{n + \alpha n + \ell} = 2 \sum_{k=1}^{n} \Re(R_{k}^\alpha \delta_{\ell k}) - \frac{2}{\lambda^2} \delta_{\ell n} + E_{n + \alpha n + \ell}
\]

and (2.51.3) follows. Finally, by (2.45) and (2.48), one has

\[
R_{2n+1}^\lambda = \sum_{k=1}^{n} R_{2n+1}^\lambda k + \sum_{k=1}^{n} R_{n + k 2n+1}^\lambda n + k = \frac{2n}{\lambda^2} + E_{2n+1} 2n+1
\]

and (2.51.4) is proved. Therefore, the proof of the proposition is complete.

Remark 1 If \((M, \theta)\) is torsion-free, then \(E_{i,j} = 0\) for all \(1 \leq i, j \leq 2n + 1\).

3 Proof of the main theorem

In this section, we prove Theorem 1.3. First, we will study the relation between the eigenvalues of the sub-Laplacian \(\Delta_{sb}\) and the eigenvalues of \(\Delta^\lambda\).

With the notations in the previous sections, we define the following covariant derivatives:

\[
f_j = X_j f, \quad f_{\alpha j} = X_j f_{\alpha} - \Gamma_{\alpha j}^\gamma f_{\gamma}, \quad f_{\bar{\alpha} j} = X_j f_{\bar{\alpha}} - \Gamma_{\bar{\alpha} j}^\gamma f_{\gamma},
\]

and

\[
f_{\beta \alpha j} = X_j f_{\beta \alpha} - \Gamma_{\beta j}^\gamma f_{\gamma \alpha} - \Gamma_{\alpha j}^\gamma f_{\beta \gamma}, \quad \text{for } \alpha, \beta \in I \cup \bar{T}, \; j \in J,
\]

where \(I = \{1, 2, \ldots, n\}, \bar{T} = \{1, \bar{2}, \ldots, \bar{n}\}\) and \(J = \{0\} \cup I \cup \bar{T}\).

The relations on the order of covariant derivatives were given by Greenleaf in [8]:

\[
f_{\beta \alpha} = f_{\alpha \beta} + i \delta_{\alpha \bar{\beta}} f_{0}, \quad \beta \in I, \; \alpha \in I \cup \bar{T},
\]

\[18\]
(3.4) \[X^\alpha_\alpha = -X_\alpha + \sum_{\beta} \Gamma^\alpha_{\beta\beta}. \]

and

(3.5) \[\Delta_{sb} f = -(X^\alpha_{\alpha}X_\alpha + X^*_\alpha X_\alpha)f = 2\text{Re}(\text{tr}(\pi D^2 f)) = \sum_{\alpha=1}^n \left(f_{\alpha\alpha} + f_{\alpha\alpha}^* \right). \]

Let \(\mu_1 \) be the first positive eigenvalue of \(\Delta_{sb} \) with real eigenfunction \(f \) on \(M \). Then \(\Delta_{sb} f = -\mu_1 f \) on \(M \). The following theorems were proved by Greenleaf [8] and Li and Luk [15]:

(a) If the assumption (1.5) holds, then \(\mu_1 \geq \frac{n}{n+1} k_0 \);

(b) If \(\mu_1 = \frac{n}{n+1} k_0 \) and (1.5) holds, then

(3.6) \[\int_M \left[\text{Ric}_m(\tilde{\nabla} f, \tilde{\nabla} f) - \frac{n+1}{2} \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \right] dv = k_0 \int_M |\tilde{\nabla} f|^2 dv \]

and

(3.7) \[f_{\alpha\beta} = 0, \quad \text{on} \quad M \quad \text{for all} \quad 1 \leq \alpha, \beta \leq n. \]

A straightforward calculation shows that the following proposition holds.

Proposition 3.1 Let \(\Delta^\lambda \) be the Laplace-Beltrami operator for \((M, h^\lambda) \). Then

(3.8) \[\Delta^\lambda = 2\Delta_{sb} + \lambda^2 X^2_0. \]

Let \(f \) be a real-valued non-constant function on \(M \) such that

(3.9) \[\Delta_{sb} f(z) = -\mu_1 f(z), \quad \text{on} \quad M. \]

Then

(3.10) \[(-\Delta^\lambda f, f) = 2\mu_1 (f, f) + \lambda^2 (X_0 f, X_0 f). \]

It was proved by Greenleaf in [8], on page 209, equation (6.2), that

\[
\int_M \left[\left(1 + \frac{2c}{n} \right) \|\pi_+ D^2 f\|^2 + \frac{n-2c}{n} \|\pi_- D^2 f\|^2 - \frac{4(1-c)}{n} |\text{tr}(\pi_+ D^2 f)|^2 - \frac{n-2+c}{2n} (\tilde{\Delta} f)^2 \right] dv \\
= -\int_M \left(\frac{n-2c}{n} \text{Ric} + \frac{2-2c-n}{2} \text{Tor} \right) (\tilde{\nabla} f, \tilde{\nabla} f) dv.
\]

Here \(\tilde{\Delta} = \Delta_{sb} \).
Notice that

\[(3.11) \quad \|\pi_+ D^2 f\|^2 \geq \frac{1}{n} |\text{tr}(\pi_+ D^2 f)|^2.\]

Assuming that \(2c > 0,\) one has

\[
\left(1 + \frac{2c}{n}\right)\|\pi_+ D^2 f\|^2 - \frac{4(1 - c)}{n} |\text{tr}(\pi_+ D^2 f)|^2 \\
\geq \frac{1}{n}\left(1 + \frac{2c}{n}\right) - \frac{4(1 - c)}{n} \frac{n|m|}{n} |\text{tr}(\pi_+(D^2 f))|^2 \\
= -\frac{3n + 2c(1 + 2n)}{n^2} |\text{tr}(\pi_+(D^2 f))|^2.
\]

Since

\[(3.12) \quad f_{\alpha\alpha} - f_{\alpha\alpha} = i f_0, \quad 1 \leq \alpha \leq n,
\]

we have that

\[
|\text{tr}(\pi_+ D^2 f)|^2 = |\text{Re}(\text{tr}(\pi_+ D^2 f))|^2 + |\text{Im}(\text{tr}(\pi_+ D^2 f))|^2 = \frac{1}{4}(\tilde{\Delta} f)^2 + \frac{n^2}{4}|f_0|^2
\]

and

\[
-\frac{3n + 2c(1 + 2n)}{n^2} |\text{tr}(\pi_+(D^2 f))|^2 - \frac{n - 2 + 2c}{2n} (\tilde{\Delta} f)^2 \\
= -\frac{3n + 2c(1 + 2n)}{4}|f_0|^2 - \frac{n - 2 + 2c}{4n^2} (\tilde{\Delta} f)^2 + \frac{2c - 2n^2 + n}{4n^2} (\tilde{\Delta} f)^2.
\]

Therefore, with the assumption \((f, f) = 1\) and \(\mu_1 = nk/(n + 1),\)

\[
-\frac{3n + 2c(1 + 2n)}{4} \int_M |X_0 f|^2 dv \\
\leq \frac{2n^2 - n - 2c}{4n^2} \int_M (\tilde{\Delta} f)^2 dv \\
- \frac{n - 2c}{n} \int_M \left(\text{Ric} - \frac{(n + 2c - 2)n}{2(n - 2c)} \text{Tor}\right)(\tilde{\nabla} f, \tilde{\nabla} f) dv \\
= \frac{2n^2 - n - 2c}{4n^2} \int_M (\tilde{\Delta} f)^2 dv - \frac{n - 2c}{n} \int_M \left(\text{Ric} - \frac{n + 1}{2} \text{Tor}\right)(\tilde{\nabla} f, \tilde{\nabla} f) dv \\
+ \frac{-3n + 2c(2n + 1)}{2n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) dv
\]
\[
\begin{align*}
&= \frac{2n^2 - n - 2c}{4n^2} \mu_1^2 - \frac{n - 2c}{n} k \mu_1 \frac{k}{2} + \frac{-3n + 2c(n + 1)}{2n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv \\
&= \mu_1^2 \left[\frac{2n^2 - n - 2c}{4n^2} - \frac{n - 2c (n + 1)}{2n} \right] \\
&\quad + \frac{-3n + 2c(2n + 1)}{2n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv \\
&= \frac{\mu_1^2}{4n^2} \left[2n^2 - n - 2c + (-2n + 4c)(n + 1) \right] \\
&\quad + \frac{-3n + 2c(2n + 1)}{2n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv \\
&= \frac{\mu_1^2}{4n^2} \left[-3n + 2c(2n + 1) \right] + \frac{-3n + 2c(2n + 1)}{2n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv.
\end{align*}
\]

Thus, if \(2c > \frac{3n}{2n + 1}\) then
\[
\int_M |X_0 f|^2 \, dv \leq \frac{\mu_1^2}{n^2} + \frac{2}{n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv.
\]

Taking \(0 < 2c < \frac{3n}{2n + 1}\), we get the reverse of the above inequality. Thus,
\[
(3.12) \quad \int_M |X_0 f|^2 \, dv = \frac{\mu_1^2}{n^2} + \frac{2}{n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv.
\]

Assume that
\[
(3.13) \quad \text{Ric}(X, X) - \frac{n + 1}{2} \text{Tor}(X, X) \geq k|X|^2 \text{ with } k = \frac{n + 1}{\lambda^2}
\]

for all \(X \in H(M)\). Thus, if \(\mu_1 = \frac{n}{\lambda^2}\) then
\[
(3.14) \quad 2\mu_1 + \frac{\lambda^2}{n^2} \mu_1^2 = \frac{2n}{\lambda^2} + \frac{\lambda^2 n^2}{n^2 \lambda^2} = \frac{2n + 1}{\lambda^2}.
\]

If we let \(\mu_{\lambda, 1}\) be the first positive eigenvalue of \(-\Delta^\lambda\), then by (3.10), (3.13), (3.14) and the assumption that \((f, f) = 1\), we have
\[
(3.15) \quad \mu_{\lambda, 1} \leq 2\mu_1 + \frac{\lambda^2}{n^2} \mu_1^2 + \frac{2\lambda^2}{n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv
\]
\[
= \frac{(2n + 1)}{\lambda^2} + \frac{2\lambda^2}{n} \int_M \text{Tor}(\tilde{\nabla} f, \tilde{\nabla} f) \, dv.
\]

Next, we will use the results in the previous two sections to get a lower bound for the matrix \([R^\lambda_{jk}]\) and then for \(\mu_{\lambda, 1}\). By (1.5), we have
\[
(3.16) \quad \text{Ric}(z, z) - \frac{n + 1}{2} \text{Tor}(z, z) \geq k|z|^2,
\]

21
for all $z \in H(M)$. Replacing z by $e^{i\theta}z$, by a suitable choice of $\theta \in [0, 2\pi)$, one has that

$$\text{(3.17)} \quad \operatorname{Ric}(z, z) - \frac{n+1}{2} |\operatorname{Tor}(z, z)| \geq k|z|^2.$$

Assume that $[\mathcal{R}_{\alpha\beta}]$ is an $n \times n$ positive definite Hermitian matrix. Write

$$\text{(3.18)} \quad C = \begin{bmatrix} \mathcal{R}_{\alpha\beta} \end{bmatrix} = A + iB$$

where A and B are real matrices. Thus, A is symmetric positive definite, and B is skew symmetric. Let $z = x + iy \in \mathbb{C}^n$ and let $s \in \mathbb{R}$. Then

$$\text{(3.19)} \quad (Cz, z) = (Ax - By + iAy + iBx, x + iy) = (Ax, x) - (By, x) + (Ay, y) + (Bx, y).$$

Let

$$\text{(3.20)} \quad G = \begin{bmatrix} A & -B \\ B & A \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \text{and} \quad X = \begin{bmatrix} x \\ y \\ s \end{bmatrix}.$$

Then G is symmetric and

$$\text{(4.21)} \quad (G\tilde{X}, \tilde{X}) = \begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \\ s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

By Proposition 2.4, one has

$$\text{(3.22)} \quad \left[R^{\lambda}_{jk} \right] = 2 \begin{bmatrix} \text{Re} \left[\mathcal{R}_{\alpha\beta} \right] - \frac{1}{\lambda^2} I_n & -\text{Im} \left[\mathcal{R}_{\alpha\beta} \right] & 0 \\ \text{Im} \left[\mathcal{R}_{\alpha\beta} \right] & \text{Re} \left[\mathcal{R}_{\alpha\beta} \right] - \frac{1}{\lambda^2} I_n & 0 \\ 0 & 0 & \frac{n}{\lambda^2} \end{bmatrix} + E.$$

By (3.16)–(3.22) and (3.49), one has

$$\text{(3.23)} \quad \left[\left[R^{\lambda}_{jk} \right] X, X \right] = 2 \left(\left[\mathcal{R}_{\alpha\beta} \right] z, z \right) - \frac{2}{\lambda^2} |z|^2 + \frac{2n}{\lambda^2}s^2 + (EX, X)$$

$$= 2 \left(\left[\mathcal{R}_{\alpha\beta} \right] z, z \right) - n\operatorname{Tor}(z, z) - \frac{2}{\lambda^2} |z|^2 + \frac{2n}{\lambda^2}s^2.$$

22
\[+4\lambda \text{Re} \left[\sum_{\alpha,k=1}^{n} \left(X_{k} A_{\alpha k} - \sum_{\ell=1}^{n} A_{\ell k} \Gamma_{\alpha k}^\ell - \sum_{\ell=1}^{n} A_{\ell \alpha} \Gamma_{k k}^\ell \right) z_{\alpha} \right] s \]
\[-2\lambda^2 \text{tr}(A^*A)s^2 - \lambda^2 \text{Re} (A_0 z, \bar{z}) \]
\[\geq 2 \left(k - \frac{1}{\lambda^2} \right) |z|^2 + |\text{Tor}(z, z)| + \frac{2n}{\lambda^2} s^2 \]
\[+ 4s \lambda \text{Re} \left[\sum_{\alpha,k=1}^{n} \left(X_{k} A_{\alpha k} - \sum_{\ell=1}^{n} A_{\ell k} \Gamma_{\alpha k}^\ell - \sum_{\ell=1}^{n} A_{\ell \alpha} \Gamma_{k k}^\ell \right) z_{\alpha} \right] \]
\[- \lambda^2 \text{Re} (A_0 z, \bar{z}) - 2\text{tr}(A^*A)\lambda^2 s^2. \]

Assume that \((M, \theta)\) is torsion-free. Then \(A_{\alpha \beta} = 0\). Thus,

\[(3.24) \quad (R^\lambda X, X) \geq \frac{2n}{\lambda^2} |X|^2, \quad k = \frac{n + 1}{\lambda^2}. \]

By the Lichnerowicz’s theorem for \(\Delta_{h^\lambda}\) on \((M, h^\lambda)\), the first positive eigenvalue \(\mu_{\lambda;1}\) for \(\Delta_{h^\lambda}\) satisfies the estimate:

\[(3.25) \quad \mu_{\lambda;1} \geq \frac{2n + 1}{\lambda^2}. \]

By \((3.15)\) with \((M, \theta)\) being torsion-free and \((3.25)\), we have

\[(3.26) \quad \mu_{\lambda;1} = \frac{2n + 1}{\lambda^2}. \]

By \((3.24)\) and \((3.26)\), one has that all conditions of Obata’s theorem hold for the Riemannian manifold \((M, h^\lambda)\). By Obata’s theorem, one has that \((M, h^\lambda)\) is isometric to the sphere \(S^{2n+1}(\lambda)\). Therefore, \((M, \theta)\) is CR equivalent to the unit sphere \(S^{2n+1}\), and the proof of the theorem is complete. \(\square\)

Acknowledgement: The author started this research work when he was visiting Chinese University of Hong Kong, and Fujian Normal University in China where he was supported by Ming Jiang Scholar Fund in the summer of 2008. The author would like to thank Hing-Sun Luk for many useful conversations and Professor Yongqing Li in Fujian for their hospitality during the period of his visit. His thanks extend to My An Tran who has read through very carefully the first draft of the paper.

References

Mailing Address:
Department of Mathematics, University of California, Irvine, CA 92697–3875, USA. E-mail: sli@math.uci.edu