Complex Analysis Study Guide

- **1. Equivalences Of Holomorphicity** For a domain $D \subset \mathbb{C}$, f(z) = u + iv is holomorphic in D if and only if $\frac{\partial f}{\partial \overline{z}} = 0$:
 - (a) If and only if u and v satisfy the Cauchy-Riemann Equations

Proof:

$$0 = \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (u + iv) = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

(b) If and only if $f(z) \in C^1(D)$.

Proof:

First assume $f' \in C^1(D)$.

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{u(x_0 + h, y_0) + iv(x_0 + h, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h, y_0) - u(x_0, y_0)}{h} + i \left(\lim_{h \to 0} \frac{v(x_0 + h, y_0) - v(x_0, y_0)}{h} \right) = \left. \frac{\partial u}{\partial x} \right|_{(x_0, y_0)} + i \left. \frac{\partial v}{\partial x} \right|_{(x_0, y_0)}.$$

On the other hand

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + ih) - f(z_0)}{ih}$$

$$= \lim_{h \to 0} \frac{1}{i} \left[\frac{u(x_0, y_0 + h) - u(x_0, y_0)}{h} + i \left(\lim_{h \to 0} \frac{v(x_0, y_0 + h) - v(x_0, y_0)}{h} \right) \right] = (-i) \left. \frac{\partial u}{\partial y} \right|_{(x_0, y_0)} + \left. \frac{\partial v}{\partial y} \right|_{(x_0, y_0)}.$$

Equating the real and imaginary parts for $f'(z_0)$, we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = i \frac{\partial v}{\partial x}$$

evaluated at (x_0, y_0) . By part (a), f is holomorphic. Now assume f is holomorphic on D. Fix $z_0 \in D$. For z near z_0 we may define $\gamma(t) = (1 - t)z_0 + tz$ and $\gamma : [0, 1] \to D$.

$$f(z) - f(z_0) = f(\gamma(1)) - f(\gamma(0)) = \oint_{\gamma} \frac{\partial f}{\partial z} dz = \int_0^1 \frac{\partial f}{\partial z} (\gamma(t)) \frac{d\gamma}{dt} dt = \int_0^1 \frac{\partial f}{\partial z} (\gamma(t)) (z - z_0) dt.$$

Dividing both sides by $z - z_0$ yields

$$\frac{f(z) - f(z_0)}{z - z_0} = \int_0^1 \frac{\partial f}{\partial z}(\gamma(t))dt$$

$$= \int_0^1 \frac{\partial f}{\partial z}(z_0)dt + \int_0^1 \left[\frac{\partial f}{\partial z}(\gamma(t)) - \frac{\partial f}{\partial z}(z_0) \right] dt = \frac{\partial f}{\partial z}(z_0) + \int_0^1 \left[\frac{\partial f}{\partial z}(\gamma(t)) - \frac{\partial f}{\partial z}(z_0) \right] dt.$$

Let $\epsilon > 0$. As $\frac{\partial f}{\partial z}$ is continuous, there is a $\delta > 0$ such that

$$\left| \frac{\partial f}{\partial z}(w) - \frac{\partial f}{\partial z}(z_0) \right| < \epsilon$$

whenever $|w-z_0| < \delta$. Note that $|\gamma(t)-z_0| = t|z-z_0| \le |z-z_0|$ for $t \in [0,1]$, therefore

$$\left| \frac{\partial f}{\partial z}(\gamma(t)) - \frac{\partial f}{\partial z}(z_0) \right| < \epsilon$$

for $|z-z_0| < \delta$. Fixing $|z-z_0| < \delta$, we have

$$\left| \int_0^1 \left[\frac{\partial f}{\partial z}(\gamma(t)) - \frac{\partial f}{\partial z}(z_0) \right] dt \right| \le \int_0^1 \left| \frac{\partial f}{\partial z}(\gamma(t)) - \frac{\partial f}{\partial z}(z_0) \right| dt \le \int_0^1 \epsilon dt = \epsilon.$$

It follows that

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \frac{\partial f}{\partial z}(z_0).$$

2. Interaction of Holomorphic Functions

(a) $\mathcal{O}(D)$, the set of all holomorphic functions on D forms an algebra.

Proof:

Let $f, g, h \in \mathcal{O}(D)$ and $a, b \in \mathbb{C}$. To be an algebra, the following conditions must hold:

- $(f+g) \cdot h = f \cdot h + g \cdot h$.
- $f \cdot (g+h) = f \cdot g + f \cdot g$.
- $(af) \cdot (bg) = (ab)(f \cdot g).$

As the algebra multiplication is standard commutative multiplication, it suffices to show that if f and g are any holomorphic function on D, then fg is as well.

$$\frac{\partial (fg)}{\partial \overline{z}} = \frac{\partial f}{\partial \overline{z}}g + f\frac{\partial g}{\partial \overline{z}} = 0g + f0 = 0.$$

So $\mathcal{O}(D)$ is in fact an algebra.

(b) Moreover, if $f: D \to E$ is holomorphic and $g: E \to C$ is holomorphic, then $g \circ f$ is holomorphic.

Proof:

As f is holomorphic, $f(x,y) = u_f(x,y) + v_f(x,y)$ and $g(x,y) = u_g(x,y) + v_g(x,y)$.

$$u(x,y) + iv(x,y) = g \circ f = g(u_f, v_f) = u_g(u_f, v_f) + iv_g(u_f, v_f)$$

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left(u_g(u_f, v_f) \right) = \frac{\partial u_g}{\partial u_f} \frac{\partial u_f}{\partial x} + \frac{\partial u_g}{\partial v_f} \frac{\partial v_f}{\partial x}$$

and

$$\frac{\partial v}{\partial y} = \frac{\partial v_g}{\partial u_f} \frac{\partial u_f}{\partial y} + \frac{\partial v_g}{\partial v_f} \frac{\partial v_f}{\partial y}.$$

As q is holomorphic,

$$\frac{\partial u_g}{\partial u_f} = \frac{\partial v_g}{\partial v_f}, \frac{\partial u_g}{\partial v_f} = -\frac{\partial v_g}{\partial u_f}$$

and as f is holomorphic

$$\frac{\partial u_f}{\partial x} = \frac{\partial v_f}{\partial y}, \frac{\partial u_f}{\partial y} = -\frac{\partial v_f}{\partial x}$$

So

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

so $g \circ f$ is holomorphic.

(c) If u is harmonic on a domain $E, f: D \to E$ is holomorphic, then $u \circ f$ is harmonic in D.

Proof:

Let $z_0 \in E$. As E is a domain, there exists a r > 0 such that $D(z_0, r) \subset E$. As $D(z_0, r)$ is simply connected, on this set we can find some holomorphic g such that Re(g) = u. On $D(z_0, r)$, $g \circ f$ is holomorphic, so its real part is harmonic. Notice $Re(g \circ f) = u \circ f$.

3. Harmonic Conjugates and Antiderivatives

(a) If f = u + iv is holomorphic, then u and v are harmonic. v is called the harmonic conjugate of u.

Proof

By the Cauchy-Riemann Equations, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. Thus

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \frac{\partial u}{\partial y} = \frac{\partial}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x} \right).$$

As $f \in C^{\infty}(D)$, order of differentiation can be changed, so

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial v}{\partial x \partial y} - \frac{\partial v}{\partial x \partial y} = 0.$$

The computation to show v is harmonic is identical.

Lemma 1. If f, g are C^1 functions on a simply connected set D and if $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ on D, then there is a function $h \in C^2(D)$ such that

$$\frac{\partial h}{\partial x} = f, \frac{\partial h}{\partial y} = g$$

on D.

Proof:

For $(x, y) \in D$, set

$$h(x,y) = \int_{a}^{x} f(t,b)dt + \int_{b}^{y} g(x,s)ds,$$

where $(a,b) \in D$. As D is simply connected, these integrals exist. By the Fundamental Theorem of Calculus

$$\frac{\partial h}{\partial y}(x,y) = g(x,y).$$

Again by the Fundamental Theorem of Calculus and since $g \in C^1(D)$,

$$\frac{\partial h}{\partial x}(x,y) = f(x,b) + \frac{\partial}{\partial x} \int_{b}^{y} g(x,s)ds = f(x,b) + \int_{b}^{y} \frac{\partial}{\partial x} g(x,s)ds = f(x,b) + \int_{b}^{y} \frac{\partial}{\partial y} f(x,s)ds$$
$$= f(x,b) + f(x,y) - f(x,b) = f(x,y).$$

(b) Given a harmonic function u on a domain D, if D is simply connected u has a harmonic conjugate v such that F = u + iv is holomorphic in D. Give a counterexample if D is not simply connected.

Proof

Let
$$f = -\frac{\partial u}{\partial y}$$
, $g = \frac{\partial u}{\partial x}$. As u is harmonic, we have $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ on D . Since $f, g \in C^1(D)$, by Lemma 1, there exists a $v \in C^2(D)$ such that

$$\frac{\partial v}{\partial x} = f = -\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y} = g = \frac{\partial u}{\partial x}.$$

By the Cauchy-Riemann Equations, F = u + iv is holomorphic.

Let D be the punctured unit disc. $u(x,y) = \ln(x^2 + y^2)$ is harmonic on D. Moreover, u along with the function $v(x,y) = 2 \tan^{-1}(y/x)$ satisfies the Cauchy-Riemann equations. However, v is not defined everywhere on D, so u + iv is not holomorphic on D.

(c) If f is holomorphic in a domain D, prove that if D is simply connected then there exists a holomorphic function F such that F'(z) = f(z) on D. Give a counterexample if D is not simply connected.

Proof:

Let f = u + iv. Let g = u, h = -v, then by the Cauchy-Riemann equations we have $\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$. By Lemma 1 there exists a real C^2 function f_1 such that

$$\frac{\partial f_1}{\partial x} = g = u, \frac{\partial f_1}{\partial y} = h = -v.$$

Now let $\hat{g} = v$, $\hat{h} = u$. Again by the Cauchy-Riemann equations, we get $\frac{\partial \hat{g}}{\partial y} = \frac{\partial \hat{h}}{\partial x}$ so by the Lemma there exists a function f_2 such that

$$\frac{\partial f_2}{\partial x} = \hat{g} = v, \frac{\partial f_2}{\partial y} = \hat{h} = u.$$

Let $F = f_1 + if_2$. F is C^2 and by the above equations F satisfies the Cauchy-Riemann equations, so F is holomorphic. Finally,

$$\frac{\partial}{\partial z}F = \frac{1}{2}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)(f_1 + f_2) = \frac{1}{2}\left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}\right) + \frac{i}{2}\left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) = \frac{1}{2}(u + u) + \frac{i}{2}(v + v) = f.$$

Let D be the punctured unit disc. Let f(z) = 1/z. f is holomorphic on D. Assume there exists a holomorphic function F such that F'(z) = f(z). Let $\gamma = \partial D(0,1)$. By calculation $\oint_{\gamma} f(z) = 2\pi i$.

However, by the Fundamental Theorem of Calculus, $\oint_{\gamma} f(z) = F(\gamma(1)) - F(\gamma(0)) = 0$. So no F can exist.

4. Cauchy's Theorem, Morera's Theorem and Cauchy's Integral Formula

(a) Cauchy's Theorem

D is a bounded domain in \mathbb{C} with piecewise C^1 boundary. If f is holomorphic in D and $f \in C(\overline{D})$, then

$$\oint_{\partial D} f(z)dz = 0.$$

Proof:

By Stokes' Theorem,

$$\oint_{\partial D} f(z)dz = \int_{D} d(f(z)dz) = \int_{D} \left(\frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z} \right) \wedge dz = \int_{D} \frac{\partial f}{\partial z} dz \wedge dz + 0 d\overline{z} \wedge dz = 0.$$

(b) Morera's Theorem

Let D be connected. If $f \in C(D)$ and for any simply closed piecewise C^1 curve γ in D we have $\oint_C f(z)dz = 0$, then f is holomorphic in D.

Proof:

Fix $z_0 \in D$. Define a function $F: D \to \mathbb{C}$ as follows. Given $z \in D$ choose a piecewise C^1 curve $\phi: [0,1] \to \mathbb{C}$ such that $\phi(0) = z_0, \, \phi(1) = z$. Set

$$F(z) = \int_{\phi} f(w)dw.$$

It is not yet clear that F is well-defined. Let τ be any piecewise C^1 curve such that $\tau(0) = z_0$, $\tau(1) = z$. Let μ be the closed curve $\phi \cup (-\tau)$. μ is piecewise C^1 . By assumption we have

$$0 = \oint_{\mathcal{U}} f(w)dw = \int_{\mathcal{D}} f(w)dw - \int_{\mathcal{T}} f(w)dw.$$

Let F = U + iV.

Fix $z = (x, y) \in D$ and ϕ going from z_0 to (x, y). Choose $h \in \mathbb{R}$ small enough so that $(x+t, y) \in D$ for $0 \le t \le h$. Let $l_h(t)$ be the line segment connecting (x, y) and (x + h, y). Let $\phi_h = \phi \cup l_h$.

$$F(x+h,y) - F(x,y) = \int_{\phi_h} f(w)dw - \int_{\phi} f(w)dw = \int_{h} f(w)dw = \int_{0}^{h} f(z+s)ds.$$

Taking the real part of this equation yields

$$\frac{U(x+h,y)-U(x,y)}{h} = \frac{1}{h} \operatorname{Re} \int_0^h f(z+s) ds = \frac{1}{h} \int_0^h \operatorname{Re} f(z+s) ds.$$

Letting $h \to 0$ on both sides yields that

$$\frac{\partial U}{\partial x}(z) = \text{Re}f(z).$$

Similar calculations yield that

$$\frac{\partial U}{\partial y} = -\mathrm{Im}f, \frac{\partial V}{\partial x} = \mathrm{Im}f, \frac{\partial V}{\partial y} = \mathrm{Re}f.$$

Thus F is holomorphic. Thus F' = f is holomorphic.

(c) Cauchy's Integral Formula

Let D be a bounded open domain in \mathbb{C} with piecewise C^1 boundary. Let f(z) be holomorphic in D and $f \in C(\overline{D})$. Then

$$\frac{1}{2\pi i} \oint_{\partial D} \frac{f(w)}{w - z} dw = f(z), z \in D.$$

Proof:

$$\frac{1}{2\pi i}\oint_{\partial D}\frac{f(w)}{w-z}dw=\frac{1}{2\pi i}\oint_{\partial D_{\epsilon}}\frac{f(w)}{w-z}dw+\frac{1}{2\pi i}\oint_{\partial D(z,\epsilon)}\frac{f(w)}{w-z}dw$$

where $D_{\epsilon} = D \setminus \overline{D(z, \epsilon)}$ for some $\epsilon > 0$ such that $D(z, \epsilon) \subset D$. By Cauchy's Integral Theorem we have

$$\begin{split} \frac{1}{2\pi i} \oint_{\partial D} \frac{f(w)}{w - z} dw &= 0 + \frac{1}{2\pi i} \oint_{\partial D(z,\epsilon)} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z + \epsilon e^{i\theta})}{\epsilon e^{i\theta}} \epsilon i e^{i\theta} d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} f(z + \epsilon e^{i\theta}) d\theta \xrightarrow{\epsilon \to 0} \frac{1}{2\pi} \int_{0}^{2\pi} f(z) d\theta = f(z). \end{split}$$

(c') Generalized Cauchy's Integral Formula

Let D be a bounded open domain in $\mathbb C$ with piecewise C^1 boundary. Let f(z) be holomorphic in D and $f \in C(\overline{D})$. Then

$$\frac{k!}{2\pi i} \oint_{\partial D} \frac{f(w)}{(w-z)^{k+1}} dw = f^{(k)}(z), z \in D.$$

Proof:

For $z \in D$,

$$f^{(k)}(z) = \frac{\partial^k}{\partial z^k} \frac{1}{2\pi i} \oint_{\partial D} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \oint_{\partial D} \frac{\partial^k}{\partial z^k} \left(\frac{f(w)}{w - z}\right) dw = \frac{1}{2\pi i} \oint_{\partial D} f(w) \frac{\partial^k}{\partial z^k} \left(\frac{1}{w - z}\right) dw$$
$$= \frac{k!}{2\pi i} \oint_{\partial D} \frac{f(w)}{(w - z)^{k+1}} dw.$$

(d) Mean Value Property

If f is holomorphic in $D(z_0, R)$, then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{z_0 + ri\theta}) d\theta$$

for 0 < r < R.

Proof:

By Cauchy's Integral Formula

$$f(z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{z-z_0} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} rie^{i\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(re^{z_0 + ri\theta}) d\theta,$$

using the substitution $z = z_0 + re^{i\theta}$.

(d') If u is harmonic in $D(z_0, R)$, then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

Proof:

Since u is harmonic and D(0, R) is simply connected, there exists a harmonic function v such that f = u + iv is holomorphic. By the Mean Value Property,

$$u(z_0)+iv(z_0)=f(z_0)=\frac{1}{2\pi}\int_0^{2\pi}f(re^{z_0+ri\theta})d\theta=\frac{1}{2\pi}\int_0^{2\pi}u(re^{z_0+ri\theta})d\theta+\frac{i}{2\pi}\int_0^{2\pi}v(re^{z_0+ri\theta})d\theta.$$

Equating the real parts of both sides yields the desired result as u and v are real-valued.

5. Applications of Cauchy's Integral Formula

(a) Liouville's Theorem

Any bounded entire function is constant.

Proof:

Let $z_0 \in \mathbb{C}$, R > 0. Let |f| < M.

$$f'(z_0) = \frac{1}{2\pi i} \oint_{|w-z_0|=R} \frac{f(w)}{(w-z_0)^2} dw.$$

$$|f'(z_0)| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(z_0 + Re^{i\theta})|}{|Re^{i\theta}|^2} |Rie^{i\theta}| d\theta \leq \frac{M}{2\pi R} \int_0^{2\pi} d\theta = \frac{M}{R} \stackrel{R \to \infty}{\longrightarrow} 0.$$

So $f'(z_0) = 0$ for all $z_0 \in \mathbb{C}$. So f is constant.

- (b) Linear and Sublinear Growth. Let f(z) be entire.
 - **i.** If f is sub-linear growth (i.e. $\lim_{z\to\infty} \frac{f(z)}{|z|} = 0$), then f is a constant.

Proof:

By Cauchy's Integral Formula

$$f'(z) = \frac{1}{2\pi i} \oint_{|w|=R} \frac{f(w)}{(w-z)^2} dw$$

$$|f'(z)| \le \frac{1}{2\pi} \oint_{|w|=R} \frac{|f(w)|}{(R-|z|)^2} dw \le \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{|f(Re^{i\theta})|}{R}\right) \frac{R^2}{(R-|z|)^2} d\theta.$$

As
$$R \to \infty$$
, $\left(\frac{|f(Re^{i\theta})|}{R}\right) \to 0$ by assumption. So $f'(z) = 0$. So f is constant.

ii. If f(z) is polynomial growth (i.e. there is some positive integer n such that $|f(z)| \le c_n(1 + |z|^n)$), then f(z) is a polynomial.

Proof:

Let $z \in \mathbb{C}$ and R >> 2|z| + 1.

$$f^{(n+1)}(z) = \frac{(n+1)!}{2\pi i} \oint_{|w|=R} \frac{f(w)}{(w-z)^{n+2}} dw.$$

$$|f^{(n+1)}(z)| \leq \frac{(n+1)!}{2\pi} \int_0^{2\pi} \frac{|f(Re^{i\theta})|}{(R-|z|)^{n+1}} \frac{R}{R-|z|} d\theta \leq \frac{(n+1)!}{2\pi} \int_0^{2\pi} \frac{c_n(1+R^n)}{(R-|z|)^{n+1}} \frac{R}{R-|z|} d\theta \stackrel{R \to \infty}{\longrightarrow} 0.$$

So f is a polynomial of degree at most n.

(c) If f is holomorphic in a domain D, then f is analytic in D.

Proof

Let $z_0 \in D$, $r_0 > 0$ such that $D(z_0, r_0) \subset D$. By Cauchy's Integral Formula, for $0 < R < r_0$, $z \in D(z_0, R)$,

$$f(z) = \frac{1}{2\pi i} \oint_{|w-z_0| = R} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \oint_{|w-z_0| = R} \frac{f(w)}{w-z_0 - (z-z_0)} dw = \frac{1}{2\pi i} \oint_{|w-z_0| = R} \frac{f(w)}{(w-z_0)(1 - \frac{z-z_0}{w-z_0})} dw.$$

Note that $\left| \frac{z - z_0}{w - z_0} \right| < 1$. So

$$f(z) = \frac{1}{2\pi i} \oint_{|w-z_0|=R} \frac{f(w)}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n dw = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{|w-z_0|=R} \frac{f(w)}{w-z_0} \left(\frac{z-z_0}{w-z_0}\right)^n dw$$

since the sum converges uniformly on $\partial D(z_0, R)$. By Cauchy's Integral Formula

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{|w-z_0|=R} \frac{f(w)}{(w-z_0)^{n+1}} dw (z-z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.$$

So this sum converges uniformly on $D(z_0, R)$ and has radius of convergence at least r_0 and the radius of convergence is given by $\limsup_{n\to\infty} |\sqrt[n]{a_n}|$.

(d) Uniform Limits of Holomorphic Functions

Let $f_j: D \to \mathbb{C}$ for j=1,2,... be a sequence of holomorphic functions on an open set D in \mathbb{C} . Suppose that there is a function $f: D \to \mathbb{C}$ such that, for any compact subset K of D, the sequence $f_j \to f$ uniformly on K. Then f is holomorphic on D.

Proof

Let $z_0 \in D$ be arbitrary. Choose r > 0 such that $\overline{D(z_0, r)} \subset D$. Since $\{f_j\}$ converges to f uniformly on $\overline{D(z_0, r)}$ and since each f_j is continuous, f is also continuous on $\overline{D(z_0, r)}$. For any $z \in D(z_0, r)$,

$$f(z) = \lim_{j \to \infty} f_j(z) = \lim_{j \to \infty} \frac{1}{2\pi i} \oint_{|w-z_0| = r} \frac{f_j(z)}{w - z} dw = \frac{1}{2\pi i} \oint_{|w-z_0| = r} \lim_{j \to \infty} \frac{f_j(z)}{w - z} dw = \frac{1}{2\pi i} \oint_{|w-z_0| = r} \frac{f(z)}{w - z} dw.$$

The interchange of integral and limit is justified by the fact that, for z fixed, $f_j(w)/(w-z)$ converges to f(w)/(w-z) uniformly for w in the compact set $\{w: |w-z_0|=r\}$.

(d') If f_j , f, D are as in the Theorem above, then for any integer k,

$$\left(\frac{\partial}{\partial z}\right)^k f_j(z) \to \left(\frac{\partial}{\partial z}\right)^k f(z)$$

uniformly on compact sets.

Proof:

As we have shown that

$$f_j(z) = \frac{1}{2\pi i} \oint_{|w-z_0|=r} \frac{f_j(w)}{w-z} dw \to \frac{1}{2\pi i} \oint_{|w-z_0|=r} \frac{f(w)}{w-z} dw = f(z)$$

uniformly, we similarly have that

$$f_j^{(k)}(z) = \frac{k!}{2\pi i} \oint_{|w-z_0|=r} \frac{f_j(w)}{(w-z)^{k+1}} dw \to \frac{k!}{2\pi i} \oint_{|w-z_0|=r} \frac{f(w)}{(w-z)^{k+1}} dw = f^{(k)}(z)$$

as f is holomorphic.

(e) Fundamental Theorem of Algebra

Let $p_n(z) = a_n z^n + \cdots + a_0$, $a_n \neq 0$ be a polynomial of degree $n \geq 1$. Then $p_n(z)$ must have a zero in \mathbb{C} .

Proof:

Assume toward contradiction that $p_n(z) \neq 0$ on \mathbb{C} . Then $\frac{1}{p_n(z)}$ is entire. There exists $R \geq 1$ such that for $|z| \geq R$,

$$\frac{1}{2}|a_n||z|^n \le |p_n(z)| \le 2|a_n||z|^n.$$

So

$$\left| \frac{1}{p_n(z)} \right| \le \frac{1}{\frac{1}{2}|a_n||z|^n} \le \frac{2}{|a_n|}.$$

As $\frac{1}{p_m(z)}$ is continuous it has a maximum on the compact set $\overline{D(0,R)}$. Let M be this maximum. Therefore

$$\frac{1}{|p_n(z)|} \le M + \frac{2}{|a_n|}$$

for $z \in \mathbb{C}$. Therefore $\frac{1}{p_n(z)}$ is constant, implying $p_n(z)$ is constant, contradicting that $n \geq 1$. Therefore $p_n(z)$ has a zero in \mathbb{C} .

(f) Uniqueness Theorem

If f(z) is holomorphic in an open connected domain D and if f(z) = 0 on an open subset of D, then $f(z) \equiv 0$.

Proof:

Let z_0 be an accumulation point of Z(f).

Claim: $\frac{\partial^n f}{\partial z^n}(z_0) = 0$ for all $n \in \mathbb{Z}^+$. Assume toward the contrary that this is not the case. Then there is some n_0 such that $\frac{\partial^{n_0} f}{\partial z^{n_0}}(z_0) \neq 0$. Then, on some disc $D(z_0, r) \subset D$, we have

$$f(z) = \sum_{j=n_0}^{\infty} \left(\frac{\partial^j}{\partial z^j} f(z_0) \right) \frac{(z-z_0)^j}{j!}.$$

Hence the function q defined by

$$g(z) = \sum_{j=n_0}^{\infty} \left(\frac{\partial}{\partial z}\right)^j f(z_0) \frac{(z-z_0)^{j-n_0}}{j!}$$

is holomorphic on $D(z_0, r)$. Notice that $g(z_0) \neq 0$ by our choice of n_0 . As z_0 is an accumulation point, there exists a sequence $\{z_k\} \subset Z(f)$ such that $z_k \to z_0$. Note that $g(z_k) = 0$ for all z_k . By the continuity of g this implies $g(z_0) = 0$. So $f^{(n)}(z_0) = 0$ for all n.

As
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 for $z \in D(z_0, r_0)$, where $r_0 = \operatorname{dist}(z_0, \partial D)$. By definition of a_n , we

have that $f(z) \equiv 0$ on $D(z_0, r_0)$. If $D(z_0, r_0) \neq D$, then there exists some $z_1 \in D(z_0, r_0)$, $z_1 \neq z_0$ such that there is a $r_1 > 0$ such that $D(z_1, r_1) \subset D$ and $D(z_1, r_1) \cap (D - D(z_0, r_0)) \neq \emptyset$ since D is open. So we may continue inductively as D is connected to find $\{z_i\}$ such that

$$\bigcup_{j=0}^{\infty} D(z_j, r_j) = D$$

and $f(z) \equiv 0$ on each $D(z_j, r_j)$. So $f(z) \equiv 0$ on D. Note that if $f(z) \not\equiv 0$, then Z(f) must be discrete.

8

(f') Factorization of a Holomorphic Function.

Let f(z) be holomorphic in D, $f \not\equiv 0$ on D. If $z_0 \in D$ such that $f(z_0) = 0$, then there exists some $k \in \mathbb{Z}^+$ and a holomorphic function g where $g(z_0) \neq 0$ such that $f(z) = (z - z_0)^k g(z)$.

Proof:

Since $f(z) \not\equiv 0$ on D, there is some k such that k is the first positive integer such that $f^{(k)}(z_0) \neq 0$. So

$$f(z) = \sum_{j=k}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j, \quad z \in D(z_0, r_0).$$

$$f(z) = (z - z_0)^k \sum_{j=0}^{\infty} \frac{f^{(j+k)}(z_0)}{(j+k)!} (z - z_0)^j$$

Let

$$g(z) = \begin{cases} \sum_{j=0}^{\infty} \frac{f^{(j+k)}(z_0)}{(j+k)!} (z-z_0)^j & \text{if } z \in D(z_0,r) \\ \frac{f(z)}{(z-z_0)^k} & \text{if } z \in D \setminus D(z_0,r) \end{cases}$$

g(z) is holomorphic in $D(z_0, r)$ and, when $z \neq z_0$, $\frac{f(z)}{(z - z_0)^k}$ is holomorphic on $D \setminus \{z_0\}$. So $g \in C(D)$. So g is holomorphic in D and

$$g(z_0) = \frac{f^{(k)}(z_0)}{k!} \neq 0$$

and

$$f(z) = (z - z_0)^k g(z), z \in D.$$

6. Isolated Singularities and Laurent Series

(a) A Laurent Series for a meromorphic function f(z) about an isolated singularity z_0 is given by

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n,$$

where $a_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$, where γ is a positively oriented simple closed curve enclosing z_0 in the annulus of convergence of f(z). The annulus of convergence of a Laurent series is given by $A(z_0, r, R) = D(z_0, R) \setminus \overline{D(z_0, r)}$, where

$$r = \limsup_{n \to \infty} \sqrt[n]{|a_{-n}|} \quad \text{and} \quad R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Proof:Let $r < s_1 < |z - z_0| < s_2 < r$.

$$f(z) = \frac{1}{2\pi i} \oint_{|w-z_0|=s_2} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \oint_{|w-z_0|=s_1} \frac{f(w)}{w-z} dw.$$

Now

$$\oint_{|w-z_0|=s_2} \frac{f(w)}{w-z} dw = \oint_{|w-z_0|=s_2} \frac{f(w)}{1 - \frac{z-z_0}{w-z_0}} \cdot \frac{1}{w-z_0} dz =$$

$$\oint_{|w-z_0|=s_2} \frac{f(w)}{w-z_0} \sum_{i=0}^{\infty} \frac{(z-z_0)^j}{(w-z_0)^k} dw = \oint_{|w-z_0|=s_2} \frac{f(w)}{w-z_0} \sum_{i=0}^{\infty} \frac{(z-z_0)^j}{(w-z_0)^k} dw = \oint_{|w-z_0|=s_2} \sum_{i=0}^{\infty} \frac{f(w)(z-z_0)^j}{(w-z_0)^{j+1}} dw$$

where the geometric series converges since $|z - z_0|/s_2 < 1$. As this is independent of w, we may switch order of integration and summation to obtain

$$\oint_{|w-z_0|=s_2} \frac{f(w)}{w-z} dw = \sum_{j=0}^{\infty} \left(\oint_{|w-z_0|=s_2} \frac{f(w)}{(w-z_0)^{j+1}} dw \right) (z-z_0)^j.$$

For $s_1 < |z - z_0|$, a similar argument justifies that

$$\oint_{|w-z_0|=s_1} \frac{f(w)}{w-z} dw = -\sum_{j=-\infty}^{-1} \left(\oint_{|w-z_0|=s_1} \frac{f(w)}{(w-z_0)^{j+1}} dw \right) (z-z_0)^j.$$

Thus

$$f(z) = \sum_{j=-\infty}^{\infty} \left(\frac{1}{2\pi i} \oint_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{j+1}} dw \right) (z-z_0)^j.$$

To find the annulus of convergence,

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

converges on $D(z_0, R)$ where R is given by

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$$

converges when

$$\left|\frac{1}{z-z_0}\right| \le R^- = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_{-n}|}} \iff |z-z_0| \ge \frac{1}{R^-} = r \iff r = \limsup_{n \to \infty} \sqrt[n]{|a_{-n}|}.$$

So our sum converges on $r \leq |z - z_0| \leq R = A(z_0, r, R)$.

(b) Isolated Singularities.

Let f be a meromorphic function in a domain D.

i. Removable: $z_0 \in D$ is a removable singularity of f if and only if $\lim_{z \to z_0} f(z) \in \mathbb{C}$ if and only if

(Riemann Lemma)
$$\lim_{z\to z_0}(z-z_0)f(z)=0$$
 if and only if $f(z)=\sum_{n=0}^\infty a_n(z-z_0)^n$.

Proof:

(Riemann Lemma for Removable Singularities)

Let

$$g(z) = \begin{cases} (z - z_0)^2 f(z) & \text{if } z \neq z_0 \\ 0 & \text{if } z = z_0 \end{cases}$$

As f is meromorphic, there exists some $\delta > 0$ such that g is holomorphic in $D(z_0, \delta) \setminus \{z_0\}$.

$$\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) f(z) = 0$$

by assumption. So $g'(z_0) = 0$. Therefore g is holomorphic in $D(z_0, \delta)$ and $g(z_0) = g'(z_0) = 0$. g(z) is therefore analytic in $D(z_0, \delta)$ and for $z \in D(z_0, \delta)$,

$$g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=2}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=2}^{\infty} a_n (z - z_0)^n = (z - z_0)^2 \sum_{n=0}^{\infty} a_{n+2} (z - z_0)^n.$$

Therefore, when $z \neq z_0$,

$$(z-z_0)^2 f(z) = (z-z_0)^2 \sum_{n=0}^{\infty} a_{n+2} (z-z_0)^n \implies f(z) = \sum_{n=0}^{\infty} a_{n+2} (z-z_0)^n.$$

Thus we have that $\lim_{z\to z_0} f(z) = a_2$. So z_0 is a removable singularity of f.

Assume z_0 is a removable singularity. Then $\lim_{z\to z_0} f(z) = c$ so $\lim_{z\to z_0} (z-z_0) f(z) = 0c = 0$.

If
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, then $\lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} \sum_{n=0}^{\infty} a_n (z - z_0)^{n+1} = 0$. So z_0 is removable.

ii. Pole: $z_0 \in D$ is a pole of f if and only if $\lim_{z \to z_0} f(z) = \infty$ if and only if there is some k such that $\lim_{z \to z_0} (z - z_0)^{k+1} f(z) = 0$ if and only if $f(z) = \sum_{n=-k}^{\infty} a_n (z - z_0)^n$.

$\mathbf{Proof}:$

Since $\lim_{z \to z_0} f(z) = \infty$, there exists some $\delta > 0$ such that f(z) is holomorphic in $D(z_0, \delta) \setminus \{z_0\}$ and $|f(z)| \ge 1$ on $D(z_0, \delta) \setminus \{z_0\}$. Let $g(z) = \frac{1}{f(z)}$. Then g(z) is holomorphic in $D(z_0, \delta) \setminus \{z_0\}$ and $|g(z)| \le 1$ on $D(z_0, \delta) \setminus \{z_0\}$. By the Squeeze Theorem, $\lim_{z \to z_0} (z - z_0)g(z) = 0$. By Riemann's Lemma, z_0 is a removable singularity for g. So g is holomorphic in $D(z_0, \delta)$ and $\lim_{z \to z_0} g(z) = \lim_{z \to z_0} \frac{1}{f(z)} = 0$. $g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for $z \in D(z_0, \delta)$ and let k be the number such that a_k is the first coefficient not equal to 0. Note that $k \ge 1$. We have that

$$g(z) = (z - z_0)^k \sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n = (z - z_0)^k h_1(z),$$

where h is holomorphic in $D(z_0, \delta)$ and $h(z_0) = a_k \neq 0$. Therefore

$$f(z) = \frac{1}{g(z)} = \frac{1}{(z-z_0)^k h_1(z)} = \frac{h(z)}{(z-z_0)^k}.$$

As $g(z) \neq 0$ on $z \in D(z_0, \delta) \setminus \{z_0\}$, $h_1(z) \neq 0$ in $D(z_0, \delta)$. So h is holomorphic and $h(z) \neq 0$. So for $z \in D(z_0, \delta) \setminus \{z_0\}$

$$f(z) = \frac{h(z)}{(z - z_0)^k},$$

so

$$\lim_{z \to z_0} (z - z_0)^{k+1} f(z) = \lim_{z \to z_0} (z - z_0) h(z) = 0.$$

iii. Essential Singularity: $z_0 \in D$ is an essential singularity of f if and only if $\lim_{z \to z_0} f(z)$ does not exist if and only if (Casorati-Weierstrass) $f(D(z_0, r) \setminus \{z_0\})$ is dense in \mathbb{C} for any r > 0 if and only if $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ where there are infinitely many n < 0 such that $a_n \neq 0$.

Proof:

Suppose there is some r > 0 such that $f(D(z_0, r) \setminus \{z_0\})$ is not dense in \mathbb{C} . So there is some $w_0 \in \mathbb{C}$ and $\epsilon > 0$ such that $|f(z) - w_0| \ge \epsilon$ for all $z \in D(z_0, r) \setminus \{z_0\}$. Let $g(z) = \frac{1}{f(z) - w_0}$. g is holomorphic in $D(z_0, r) \setminus \{z_0\}$. So z_0 is an isolated singularity of g. Moreover,

$$|g(z)| = \frac{1}{|f(z) - w_0|} \le \epsilon \implies \lim_{z \to z_0} (z - z_0)g(z) = 0$$

By Riemann's Lemma z_0 is a removable singularity of g. Therefore $\lim_{z\to z_0}g(z)=c$. If c=0, then

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} w_0 + \frac{1}{g(z)} = \infty.$$

So z_0 is a pole of f.

If $c \neq 0$, then

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} w_0 + \frac{1}{g(z)} = w_0 + \frac{1}{c}.$$

So z_0 is a removable singularity of f. Both of these are a contradiction. Therefore w_0 must be a limit point of $f(D(z_0, r) \setminus \{z_0\})$.

If $f(D(z_0,r)\setminus\{z_0\})$ is dense in $\mathbb C$ for any r>0, then there exists a sequence $\{z_j\}\subset D(z_0,r)\setminus\{z_0\}$ converging to z_0 such that $f(z_j)\to 0$ and a sequence $\{w_j\}\subset D(z_0,r)\setminus\{z_0\}$ converging to z_0 such that $f(w_j)\to 1$. So $\lim_{z\to z_0}f(z)$ does not exist.

(c) Residue Theorem

Suppose D is an open simply connected set in \mathbb{C} and that z_1, \ldots, z_n are distinct points of D. Suppose that $f: D \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ is a holomorphic function and γ is a closed, piecewise C^1 curve in $D \setminus \{z_1, \ldots, z_n\}$. Then

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) dz = \sum_{j=1}^{n} \operatorname{Res}(f(z); z = z_{j}) \left(\frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z - z_{j}} dz \right).$$

Proof

Let $S_j(z)$ be the singular part of f at $z=z_j$, i.e. if $f(z)=\sum_{n=-\infty}^{\infty}a_n(z-z_j)^n$, then $S_j(z)=$

$$\sum_{n=-\infty}^{-1} a_n (z-z_j)^n$$
. Then $f(z) - \sum_{j=1}^n S_j(z)$ is holomorphic in D . By Cauchy's Theorem

$$\oint_{\gamma} f(z) - \sum_{j=1}^{n} S_j(z) dz = 0.$$

So

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) = \sum_{j=1}^{n} \frac{1}{2\pi i} \oint_{\gamma} S_{j}(z) dz = \sum_{j=1}^{n} \frac{1}{2\pi i} \oint_{\gamma} \sum_{k=-\infty}^{-1} a_{k}^{(j)} (z - z_{j})^{k} dz$$

$$= \sum_{j=1}^{n} \frac{1}{2\pi i} \left(\oint_{\gamma} \sum_{k=-\infty}^{-2} a_{k}^{(j)} (z - z_{j})^{k} dz + a_{-1}^{(j)} \oint_{\gamma} \frac{1}{z - z_{j}} dz \right)$$

$$= \sum_{j=1}^{n} \sum_{k=-\infty}^{-2} \frac{a_{k}^{(j)}}{2\pi i} \oint_{\gamma} \frac{d(z - z_{j})^{n+1}}{n+1} + a_{-1}^{(j)} \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z - z_{j}} dz = \sum_{j=1}^{n} \operatorname{Res}(f(z); z = z_{j}) \left(\frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z - z_{j}} dz \right).$$

Note: $\frac{1}{2\pi i} \oint_{\gamma} \frac{1}{z - z_i} dz$ is an integer.

(c') Computing Residues

Let f be a function with a pole of order k at z_0 . Then

Res
$$(f(z); z = z_0) = \frac{1}{(k-1)!} \left(\frac{\partial}{\partial z} \right)^{k-1} \left((z - z_0)^k f(z) \right) \Big|_{z=z_0}.$$

Proof:

By the Residue Theorem, for some r > 0,

$$\operatorname{Res}(f(z); z = z_0) = \frac{1}{2\pi i} \oint_{|z-z_0|=r} f(z) dz = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{f(z)(z-z_0)^k}{(z-z_0)^k}.$$

By the proof above, $f(z)(z-z_0)^k$ has a removable singularity at z_0 , so it may be extended to a holomorphic function on D(0,r). By Cauchy's Integral Formula

$$\frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{(f(z)(z-z_0)^k)}{(z-z_0)^k} dz = \frac{1}{(k-1)!} \left(\frac{\partial}{\partial z}\right)^{k-1} \left(f(z)(z-z_0)^k\right|_{z=z_0}.$$

7. Evaluating Improper Integrals

(a) $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$, R is a rational function.

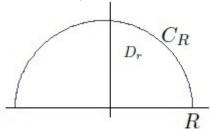
We use the parameterization, $e^{i\theta} = z$. As |z| = 1, $\overline{z} = \frac{1}{z}$, so we have

$$\cos z = \frac{1}{2} \left(z + \frac{1}{z} \right),$$
 $\sin z = \frac{1}{2i} \left(z - \frac{1}{z} \right).$

As $z = e^{i\theta}$, $dz = ie^{i\theta}d\theta$, so $\frac{1}{iz}dz = d\theta$. Our integral can then be written

$$\int_{|z|=1} R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right) \frac{1}{iz}dz.$$

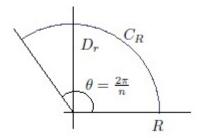
(b) $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx$, $Q(x) \neq 0$ on \mathbb{R} , $\deg(Q) \geq \deg(P) + 2$. If $z_1, \ldots, z_n \in \mathbb{R}^2_+$ are the roots of Q(z), then consider the curve



where R is large enough so that $\{z_j\} \subset D_R$.

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = \oint_{\partial D_R} \frac{P(z)}{Q(z)} dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} \left(\frac{P(z)}{Q(z)}; z = z_k \right).$$

(c) $\int_0^\infty \frac{P(x)}{Q(x)} dx, \ Q(x) \neq 0 \text{ on } (0, \infty), \ \deg(Q) \geq \deg(P) + 2.$ Let $Q(x) = 1 + a_1 x^{n_1} + \dots + a_k x^{n_k}, \ a_j \neq 0$. Let $n = \gcd(n_1, \dots, n_k)$. Consider the curve



where R is large enough so that all roots of Q(x) with argument between 0 and $2\pi/n$ are in D_R .

$$2\pi i \sum_{k=1}^{n} \mathrm{Res}\left(\frac{P(z)}{Q(z)}; z = z_{k}\right) = \oint_{\partial D_{R}} = \int_{0}^{R} \frac{P(x)}{Q(x)} dx + \int_{C_{R}} \frac{P(z)}{Q(z)} dz + \int \frac{P(re^{i2\pi/n})}{Q(re^{i2\pi/n})} e^{i2\pi/n} dr$$

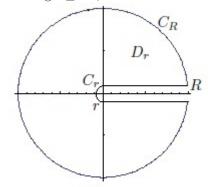
$$\stackrel{R\to\infty}{\longrightarrow} \left(1 - e^{2\pi/n}\right) \int_0^\infty \frac{P(x)}{Q(x)} dx + 0$$

where z_1, \ldots, z_k are the zeros of Q(z) in D_R for R large enough.

(d) $\int_{-\infty}^{\infty} R(x) \cos(x) dx = \operatorname{Re}\left(\int_{-\infty}^{\infty} R(x) e^{ix} dx\right)$, where R(x) is a rational function.

Fact: $\int_{-\infty}^{\infty} f(x)e^{ix}dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z)e^{iz}; z=z_{k}\right)$, for $z_{k} \in \mathbb{R}_{+}^{2}$ so long as $f(re^{i\theta}) \to 0$ as $r \to \infty$ uniformly for $\theta \in (0,\pi)$.

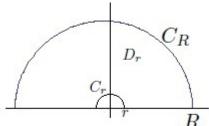
(e) $\int_0^\infty R(x)x^\alpha dx$, $\alpha \in ((-1,0) \cup (0,1)) \cap \mathbb{Q}$, R a rational function. For $\deg R \leq -2$, consider the curve



 $2\pi i \sum_{k=1}^{n} \text{Res}\left(\frac{P(z)}{Q(z)}; z = z_{k}\right) = \int_{r}^{R} R(x) x^{\alpha} dx + \int_{C_{R}} R(z) z^{\alpha} dz + \int_{R}^{r} R(x e^{2\pi i}) x^{\alpha} e^{i\alpha 2\pi} dx - \int_{C_{r}} R(x) x^{\alpha} dx.$

$$0^{r \to 0^+, R \to \infty} + \int_0^\infty R(x) x^\alpha dx - e^{i2\pi i\alpha} \int_0^\infty R(x) x^\alpha dx - 0 = \left(1 - e^{i2\pi\alpha}\right) \int_0^\infty R(x) x^\alpha dx.$$

(f) $\int_0^\infty R(x) \ln x dx$. Consider the curve



$$\int_{\partial D_{r,R}} R(z) \ln z dz = \int_{r}^{R} R(x) \ln x dx + \int_{-R}^{-r} R(x) (\ln |x| + i\pi) dx - \int_{C_{r}} R(z) \ln z dz + \int_{C_{R}} R(z) \ln z dz.$$

8. Argument Principle

(a) Argument Principle

Let f be a meromorphic function on a domain D, f continuous on \overline{D} , ∂D has piecewise C^1 boundary. If F has neither poles nor zeros on ∂D , then

$$\frac{1}{2\pi i} \oint_{\partial D} \frac{f'(z)}{f(z)} dz$$

(b) Rouché's Theorem

Let D be a bounded domain with piecewise C^1 boundary. Let f,g be holomorphic in D and continuous on ∂D . If

$$|f(z) + g(z)| \le |f(z)| + |g(z)|, z \in \partial D,$$

then $\#Z_D(f) = \#Z_D(g)$.

(c) Hurwitz's Theorem

Let $\{f_n\}$, f be holomorphic functions in a domain $D \subset \mathbb{C}$. $f_n(z)$ is nonzero for $z \in D$. If $f_n \to f$ uniformly on any compact subset of D, then either

$$f(z) \equiv 0$$
 or $f(z) \neq 0$ for $z \in D$.

Corollary If $f_n \to f$ uniformly on \overline{D} and $f(z) \neq 0$ on \overline{D} , then there exists some N such that $f_n(z) \neq 0$ for $n \geq N, z \in D$.

Proof

Let $z_0 \in D$. As D is open, there exists r > 0 such that $\overline{D(z_0, r)} \subset D$. Let $\delta = \min\{|f(z)| : z \in \partial D(z_0, r)\} > 0$. By uniform continuity, for $z \in \partial \overline{D(z_0, r)}$, there exists some N such that for any $n \geq N$,

$$|f(z) - f_n(z)| < \frac{\delta}{2}.$$

We also have

$$\frac{\delta}{2} < |f(z)| \le |f(z)| + |f_n(z)|.$$

Therefore

$$|f(z) + (-f_n(z))| < |f(z)| + |-f_n(z)|.$$

So $\#Z_{D(z_0,r)}(f) = \#Z_{D(z_0,r)}(f_n)$. So, in particular, as $f(z_0) \neq 0$, $f_n(z_0) \neq 0$. As z_0 was arbitrary, $f_n(z) \neq 0$ for $z \in D$.

(d) Gauss-Lucas Theorem

Let p(z) be a polynomial. Then all the zeros of p'(z) lie in the convex hull of the zero set of p(z).

Proof:

Let
$$p(z) = a \prod_{j=1}^{n} (z - a_j).$$

$$\frac{p'(z)}{p(z)} = \sum_{j=1}^{n} \frac{1}{z - a_j}.$$

If z is a zero of p' and $p(z) \neq 0$, then

$$\sum_{j=1}^{n} \frac{1}{z - a_j} = 0.$$

Multiplying top and bottom of each term by $\overline{z-a_i}$ respectively, we get

$$\sum_{j=1}^{n} \frac{\overline{z} - \overline{a_j}}{|z - a_j|^2} = 0.$$

Rewriting this, we have

$$\left(\sum_{j=1}^{n} \frac{1}{|z - a_j|^2}\right) \overline{z} = \sum_{j=1}^{n} \frac{1}{|z - a_j|^2} \overline{a_j}.$$

Taking the conjugate of both sides, we have z is a weighted sum with positive coefficients that sum to one. So z is in the convex hull of the roots of p.

Note that if p(z) = 0 also, then as z is a root of p it is in the convex hull of the zero set of p(z) already.

(e) Open Mapping Theorem

If f is holomorphic and nonconstant in a domain D, then $f: D \to \mathbb{C}$ is an open mapping.

Proof:

Let O be open in D. Let $w_0 \in f(O)$. Then there exists a $z_0 \in O$ such that $f(z_0) = w_0$, i.e. $f(z_0) - w_0 = 0$. By the Uniqueness Theorem, there exists a $\delta > 0$ such that $\overline{D(z_0, \delta)} \subset O$ and $f(z) - w_0 \neq 0$ on $\overline{D(z_0, \delta)} \setminus \{z_0\}$. Let $\epsilon = \min\{|f(z) - w_0| : |z - z_0| = \delta\} > 0$, which exists by compactness and choice of δ . It suffices to show $D(w_0, \epsilon) \subset f(O)$, that is, for any $w \in D(w_0, \epsilon)$, f(z) - w = 0 has a solution in $D(z_0, \delta)$, then $D(w_0, \epsilon) \subset f(D(z_0, \delta)) \subset f(O)$. It suffices to show, for $w \in D(w_0, \epsilon)$,

$$\#Z_{D(z_0,\delta)}(f(z)-w) = \frac{1}{2\pi i} \oint_{\partial D(z_0,\delta)} \frac{(f(z)-w)'}{f(z)-w} dz = \frac{1}{2\pi i} \oint_{\partial D(z_0,\delta)} \frac{f'(z)}{f(z)-w} dz > 0.$$

Set

$$g(w) = \frac{1}{2\pi i} \oint_{\partial D(z_0, \delta)} \frac{f'(z)}{f(z) - w} dz.$$

By the Argument Principle, g(w) is integer-valued on $D(w_0, \epsilon)$. From the definition, g(w) is continuous on $D(w_0, \epsilon)$ as $\epsilon = \min\{|f(z) - w_0| : z \in \partial D(z_0, \delta)\}$, so for z such that $|z - z_0| = \delta$, |f(z) - w| > 0. Moreover, $f(z_0) = w_0$. So $g(w_0) \ge 1$. By continuity, $g(w) \equiv g(w_0) \ge 1$. So $D(w_0, \epsilon) \subset f(O)$. So f is an open mapping.

(f) Maximum Modulus Theorem

Let f be holomorphic in a domain D. If there is some $z_0 \in D$ such that $|f(z)| \leq |f(z_0)|$ for all $z \in D$, then f is constant.

Proof:

Let z_0 be as above and assume toward contradiction f be nonconstant. Then f is an open mapping, so there exists some $\delta > 0$ such that $\overline{D(f(z_0), \delta)} \subset f(D)$. However, there exists a point on $\partial D(f(z_0), \delta)$, for instance, with modulus greater than $|f(z_0)|$. This contradicts our choice of z_0 . So f must be constant.

Corollary If f is holomorphic in a bounded domain D and f is continuous on \overline{D} , then the maximum of f occurs on ∂D .

Minimum Modulus Theorem If f is holomorphic in a domain and $f \neq 0$ on D, then if there is some $z_0 \in D$ such that $|f(z_0)| \leq |f(z)|$ for $z \in D$, then f(z) is constant.

Proof:Define $g(z) = \frac{1}{z}$ and apply the Maximum Modulus Theorem to g(z).

9. Conformal Maps

(a) Schwarz Lemma

Let $f: D(0,1) \to D(0,1)$ be holomorphic and f(0) = 0. Then

- (i) $|f(z)| \le z \text{ for } z \in D(0,1)$
- (ii) If f'(0) = 1 or $|f(z_0)| = |z_0|$ for $z_0 \in D(0,1) \setminus \{0\}$, then $f(z) = e^{i\theta}z$, $\theta \in [0, 2\pi)$.

Proof

(i) Let $g(z) = \frac{f(z)}{z}$. By Riemann's Lemma, g is holomorphic in D(0,1), $|g(z)| = \frac{1}{|z|}|f(z)| \le \frac{1}{|z|}$ for $z \in D(0,1)$.

For r < 1, $|g(z)| \le \frac{1}{r}$ for $z \in D(0,r)$ by the Maximum Modulus Principle. Letting $r \to 1^-$, we have $|g(z)| \le 1$, i.e. $|f(z)| \le |z|$. Note also that this implies that $g: D(0,1) \to \overline{D(0,1)}$.

(ii) If $z_0 \neq 0$ and $|f(z)| = |z_0|$, then $|g(z_0)| = 1$, which by the Maximum Modulus Theorem implies |g(z)| = 1, i.e. $g(z) = e^{i\theta}$, $\theta \in [0, 2\pi)$. So $f(z) = e^{i\theta}z$. If f'(0) = 1, then

$$f'(0) = \lim_{z \to 0} \left| \frac{f(z) - f(0)}{z - 0} \right| = \lim_{z \to 0} \left| \frac{f(z)}{z} \right| = 1,$$

which implies |g(0)| = 1. Again by the Maximum Modulus Theorem, $g(z) = e^{i\theta}$, so $f(z) = e^{i\theta}z$.

(b) Schwarz-Pick Lemma

Let $f: D(0,1) \to D(0,1)$

(i)
$$\left| \frac{f(z) - f(0)}{1 - \overline{f(0)} f(z)} \right| \le |z|$$

(ii) Let
$$a \in D(0,1)$$
. Then $\left| \frac{f(z) - f(a)}{1 - \overline{f(a)}f(z)} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|$ for $z \in D$.

Proof:

(i) Let $g(z) = \frac{f(0) - f(z)}{1 - \overline{f(0)}f(z)}$. Then $g: D(0,1) \to D(0,1)$. Note g(0) = 0, so by Schwarz Lemma, $|g(z)| \le |z|$, i.e.

$$\left| \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)} \right| \le |z| \text{ for } z \in D(0, 1).$$

(ii) Let $a \in D(0,1)$ and define $\phi_a(z) = \frac{a-z}{1-\overline{a}z}$. Then $\phi_a(0) = a$. Note that $f \circ \phi_a : D(0,1) \to D(0,1)$. By the above argument,

$$\left| \frac{f \circ \phi_a(z) - f \circ \phi_a(0)}{1 - \overline{f} \circ \phi_a(0) \overline{f} \circ \phi_a(z)} \right| \le |z| \text{ for } z \in D,$$

or after simplification

$$\left| \frac{f \circ \phi_a(z) - f(a)}{1 - \overline{f(a)} f \circ \phi_a(z)} \right| \le |z| \text{ for } z \in D.$$

As this holds for all $z \in D(0,1)$, we may plug in $\phi_a^{-1}(z) = \phi_a(z)$ into this function. Therefore

$$\left| \frac{f \circ \phi_a \circ \phi_a(z) - f(a)}{1 - \overline{f(a)} f \circ \phi_a \circ \phi_a(z)} \right| = \left| \frac{f(z) - f(a)}{1 - \overline{f(a)} f(z)} \right| \le |\phi_a(z)| = \left| \frac{a - z}{1 - \overline{a}z} \right| \text{ for } z \in D.$$

Corollary If $f: D(0,1) \to D(0,1)$, then $|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}$ for $z \in D(0,1)$

Proof:

By Schwarz-Pick, after rearrangement

$$\left| \frac{f(z) - f(a)}{z - a} \right| \le \left| \frac{1 - \overline{f(a)} f(z)}{1 - \overline{a}z} \right|.$$

Letting $a \to z$, we have

$$|f'(z)| \le \left| \frac{1 - |f(z)|^2}{1 - |z|^2} \right| = \frac{1 - |f(z)|^2}{1 - |z|^2}$$

as |f(z)|, |z| < 1.

Corollary If there is a $z_0 \in D(0,1)$ such that $|f'(z_0)| = \frac{1 - |f(z_0)|^2}{1 - |z|^2}$, then

$$\left| \frac{f(z) - f(z_0)}{1 - \overline{f(z_0)}} f(z) \right| = \left| \frac{z - z_0}{1 - \overline{z_0} z} \right|.$$

Proof:

Proof follows from the Maximum Modulus Theorem.

(c) Image of Boundary under Biholomorphic Maps

Let D_1, D_2 be domains in \mathbb{C} . Let $f: D_1 \to D_2$ be biholomorphic. Then $f(\partial D_1) \subset \partial D_2$.

(d) Characterization of $\operatorname{Aut}(D(0,1))$ Let $\phi \in \operatorname{Aut}(D(0,1))$, $a \in D(0,1)$ such that $\phi(a) = 0$. Let $g(z) = \phi(z) \frac{1 - \overline{a}z}{a - z}$. Then $g : D(0,1) \to D(0,1)$ is holomorphic, $g(z) \neq 0$ on D and $|g(z)| \to 1$ as $|z| \to 1$. By the Maximum and Minimum Modulus Theorem, $\min\{|g(z)| : |z| = r\} \leq |g(z)| \leq \max\{|g(z)|L|z| = r\}$ for $z \in D(0,r)$. Letting $r \to 1^-$, we have $1 \leq |g(z)| \leq 1$ for $z \in D(0,1)$. So $g(z) = e^{i\theta}$ for $\theta \in [0, 2\pi)$. So $\phi(z) = e^{i\theta}\phi_a(z) = e^{i\theta}\frac{a-z}{1-\overline{a}z}$.

(e) Möbius Transfoms

A Möbius Transfom is a rational function of the form $f(z) = \frac{az+b}{cz+d}$, where $ad-bc \neq 0$. For any two circles $\Gamma_1, \Gamma_2 \subset \overline{\mathbb{C}}$, there exists a Möbius Transfom T that maps $\Gamma_1 \to \Gamma_2$ where $z_1, z_2, z_3 \in \Gamma_1, z_i \neq z_j, w_1, w_2, w_3 \in \Gamma_2, T(z_j) = w_j$.

Proof:

We use the real line as an intermediate step. Consider first

$$S(z) = \frac{z - z_1}{z - z_3} / \left(\frac{z_2 - z_1}{z_2 - z_3}\right)$$

Then

$$S(z_1) = 0$$

$$S(z_2) = 1$$

$$S(z_3) = \infty$$

So $S: \Gamma_1 \to \mathbb{R}$.

$$\tilde{S}(w) = \frac{w - w_1}{w - w_3} / \left(\frac{w_2 - w_1}{w_2 - w_3}\right)$$

Then

$$\tilde{S}(w_1) = 0$$

$$\tilde{S}(w_2) = 1$$

$$\tilde{S}(z_3) = \infty$$

Define $T(z) = \tilde{S}^{-1} \circ S$. Then

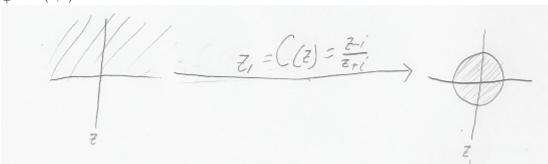
$$T(z_1) = \tilde{S}^{-1} \circ S(z_1) = \tilde{S}^{-1}(0) = w_1$$

$$T(z_2) = \tilde{S}^{-1} \circ S(z_2) = \tilde{S}^{-1}(1) = w_2$$

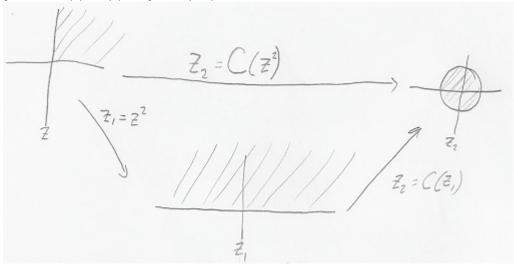
$$T(z_3) = \tilde{S}^{-1} \circ S(z_3) = \tilde{S}^{-1}(\infty) = w_3$$

(f) Conformal Maps

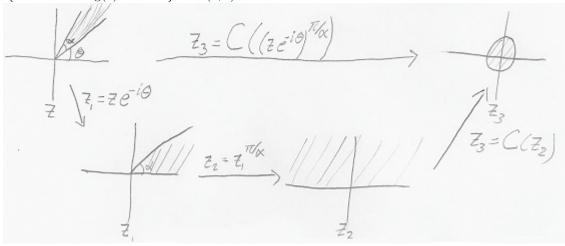
I.
$$\mathbb{R}^2_+ \to D(0,1)$$



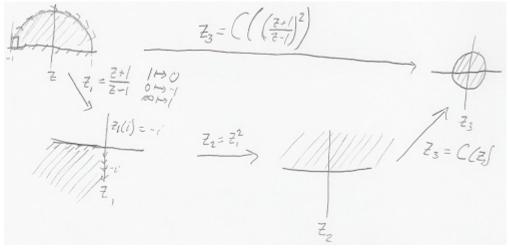
II. $\{z \in \mathbb{C} : \operatorname{Re}(z), \operatorname{Im}(z) > 0\} \to D(0, 1)$



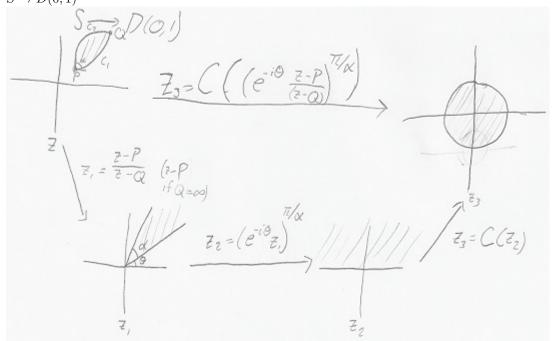
III. $\{z \in \mathbb{C} : \theta < \arg(z) < \theta + \alpha\} \to D(0,1)$



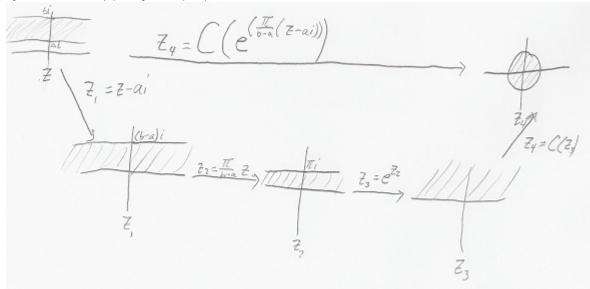
IV. $D(0,1) \cap \mathbb{R}^2_+ \to D(0,1)$



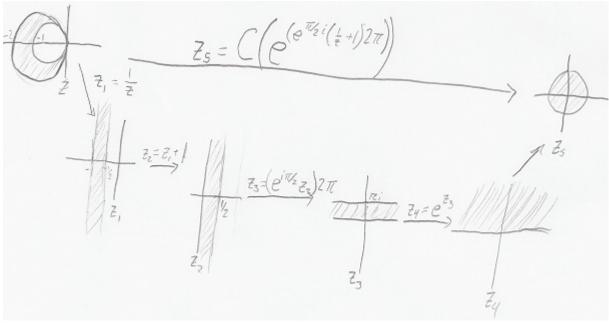
V. Given two circles C_1, C_2 in $\overline{\mathbb{C}}$ that intersect at P, Q, where $P \in \mathbb{C}$. Let α denote the interior angle between C_1 and C_2 at P. Let S be the area bounded by C_1 and C_2 . $S \to D(0,1)$



VI. $\{z \in \mathbb{C} : a < \operatorname{Im}(z) < b\} \to D(0,1)$



VII. $D(-1,1) \cap \overline{D(-1/2,1/2)} \to D(0,1)$



(g) Normal Families

- (i) Let D be a domain in \mathbb{C} and let $\{f_n\}$ be a sequence of continuous functions on D and f is continuous on D. f_n is said to converge to f normally in D, if, for any compact $K \subset D$, $f_n \to f$ uniformly on K.
- (ii) Let D be a domain and \mathcal{F} be a family of continuous functions on D. $\mathcal{F}(D)$ is a normal family if, for any sequence $\{f_n\} \subset \mathcal{F}$, there is a subsequence $\{f_{n_k}\}$ and $f \in C(D)$ such that $f_{n_k} \to f$ normally on D.
- (iii) Montel's Theorem

Let D be a domain in \mathbb{C} , $\mathcal{F}(D)$ is a family of holomorphic functions on D. \mathcal{F} is a normal family if and only if \mathcal{F} is uniformly bounded on compact subsets of D.

(h) Riemann Mapping Theorem

Let D be a simply connected domain in \mathbb{C} , $D \neq \mathbb{C}$. Then, for any given point $p_0 \in D$, there is a unique biholomorphic map ϕ on D such that $\phi: D \to D(0,1)$, $\phi(p_0) = 0$, $\phi'(p_0) > 0$.

Uniqueness of Riemann Mapping Theorem Let $\phi_1, \phi_2 : D \to D(0,1), \phi_j(p_0) = 0, \phi'_j(p_0) > 0$ for j = 1, 2. It suffices to show $f = \phi_2 \circ \phi_1^{-1} : D(0,1) \to D(0,1)$ is the identity. Note first that $f(0) = \phi_2 \circ \phi_1^{-1}(0) = \phi_2(p_0) = 0$. Second note that

$$f'(0) = \phi_2'(\phi^{-1}(0)) \left(\phi_1^{-1}\right)'(0) = \phi_2'(p_0) \frac{1}{\phi_1'(\phi_1^{-1}(0))} = \phi_2'(p_0) \frac{1}{\phi_1'(p_0)} > 0.$$

So $f(z) = e^{i\theta}z$ by Schwarz's Lemma. As f'(0) > 0, $\theta = 0$, so f is the identity, as desired.

Lemma Let f be a one-to-one holomorphic function $f: D \to D(0,1)$, $f(p_0) = 0$, $f'(p_0) > 0$, f not onto, then there exists a holomorphic $g: D \to D(0,1)$, g one-to-one, $g(p_0) = 0$, $g'(p_0) > f'(p_0)$.

Proof:

As f is not onto, there is a $w \notin f(D)$. The function $\frac{f(z) - w}{1 - \overline{w}f(z)}$ is nonzero on D. As D is

simply connected, we can define $h(z)^2 = \frac{f(z) - w}{1 - \overline{w}f(z)}$, where h(z) is a holomorphic function. Let

$$g(z) = \frac{|h'(z_0)|}{h'(z_0)} \frac{h(z) - h(z_0)}{1 - \overline{h(z_0)}h(z)}.$$

Notice that $g(z_0) = 0$, $g: D \to D(0,1)$ and g is one-to-one. Also,

$$g'(z_0) = \frac{|h'(z_0)|}{1 - |h(z_0)|^2} = \frac{1 + |w_0|}{2\sqrt{|w_0|}} f'(p_0) > f'(p_0).$$

10. Reflection Principle (a) Let f(z) be holomorphic on D, $D \subset \mathbb{R}^2_+$, $(a,b) \subset \overline{D} \cap \mathbb{R}$. If f(z) is continuous on $D \cup (a,b)$ and f(z) is real-valued for $z \in (a,b)$, then f(z) can be extended to a holomorphic function on $D_e = D \cup (a,b) \cup D^*$ where $D^* = \{z : \overline{z} \in D\}$.

Corollary Let D be a domain contained in $D(z_0, r)$ so that $\Gamma = \{z_0 + re^{i\theta} : \theta_1 < \theta < \theta_2\},$ $\Gamma \subset \overline{D} \cap \overline{D(z_0, r)}$. Assume f is holomorphic on D, continuous on $D \cup \Gamma$ and f is real valued on

- Γ . Then f extends to a holomorphic function on $D \cup \Gamma \cup D^*$ where $D^* = \{z_0 + \frac{r^2}{\overline{z-z_0}} : z \in D\}$.
- 11. Infinite Products (a) $\prod_{j=1}^{\infty} (1+z_j)$ converges to $z \neq 0$ if and only if $\sum_{j=1}^{\infty} \ln(1+z_j)$ converges in \mathbb{C} .
 - (b) $\prod_{j=1}^{\infty} (1+z_j)$ converges absolutely if $\sum_{j=1}^{\infty} |\ln(1+z_j)|$ converges. $\prod_{j=1}^{\infty} (1+z_j)$ converges absolutely if and only if $\sum_{j=1}^{\infty} |z_n|$ converges, for $|z_n| \leq 1$.
 - (c) Weierstrass Factorization Theorem

Let D be a simply connected domain in \mathbb{C} , let $f(z) \neq 0$ be meromorphic on D. Then

$$f(z) = e^{g(z)} \frac{h_1(z)}{h_2(z)}$$

where g, h_1, h_2 are holomorphic on D, where $Z_D(h_1) = Z_D(f)$ counting multiplicity and $Z_D(h_2) = P(f)$ counting order.

Example Prove that if D is a simply connected domain and f(z) is holomorphic and nonzero on D, then $f(z) = e^{g(z)}$, where g(z) is holomorphic on D.

Solution

As f(z) is nonzero on D, the function $\frac{f'(z)}{f(z)}$ is holomorphic on D. Let $F'(z) = \frac{f'(z)}{f(z)}$. Consider the function $e^{-F(z)}f(z)$.

We claim this is a constant function. As it is holomorphic, it suffices to check its derivative is zero.

$$\left(e^{-F(z)}f(z)\right)' = e^{-F(z)} - F'(z)f(z) + e^{-F(z)}f'(z) = e^{-F(z)}\left(-F'(z)f(z) + f'(z)\right)$$
$$= e^{-F(z)}\left(-\frac{f'(z)}{f(z)}f(z) + f'(z)\right) = e^{-F(z)}\left(0\right) = 0.$$

Therefore $e^{-F(z)}f(z) = e^{i\alpha}$, or after rearrangement

$$f(z) = e^{F(z) + i\alpha}.$$

As F(z) is holomorphic on D, setting $g(z) = F(z) + i\alpha$ yields the desired result.

(d) Mittag-Leffler Theorem

Let D be a domain in \mathbb{C} , $\{z_n\}$ a sequence in D without a limit point in D. Let

$$S_n = \sum_{k=-N}^{-1} a_{k_n} (z - z_n)^k$$
 for some $N_n \ge 1$.

Then there is a meromorphic function f on D such that $f - S_n$ is holomorphic at a neighborhood of z_n .

12. Harmonic Functions

(a) Harmonic Function

 $u: D \to \mathbb{R}$ is harmonic if $\Delta u = 0$ in D.

(b) Dirichlet Boundary Value Problem

For a continuous ϕ on $\partial D(0,1)$, consider the conditions

$$\left\{ \begin{array}{ll} \Delta u(z) = 0 & \text{if} \quad z \in D(0,1) \\ u = \phi & \text{on} \quad \partial D(0,1) \end{array} \right.$$

This has the unique solution

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \phi(e^{i\theta}) d\theta.$$

Proof:

We first show that u(z) is harmonic. We begin by writing

$$\frac{1-|z|^2}{|1-ze^{-i\theta}|^2} = \frac{e^{i\theta}}{e^{i\theta}-z} + \frac{e^{-i\theta}}{e^{-i\theta}-\overline{z}} - 1.$$

Therefore, for $z \in D(0,1)$,

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}) \frac{e^{i\theta}}{e^{i\theta} - z} d\theta + \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}) \frac{e^{-i\theta}}{e^{-i\theta} - \overline{z}} d\theta - \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}) d\theta.$$

The first integral is a holomorphic function (so it is harmonic) on D(0,1) since $e^{i\theta}/(e^{i\theta}-z)$ is holomorphic in z on D(0,1). The second integral is harmonic, since its derivative with respect to z is 0. The final integral is a constant, so it is also harmonic on D(0,1). So u is harmonic. It remains to show that u is continuous at the boundary, i.e.

$$\lim_{z \to z_0} u(z) = \phi(z_0)$$

for $z_0 \in \partial D(0,1)$.

Notice first that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} d\theta = 1,$$

therefore

$$\phi(z_0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \phi(z_0) d\theta$$

where $z_0 \in \partial D(0,1)$. Consider now the function

$$E(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \left(\phi(e^{i\theta}) - \phi(z_0) \right) d\theta.$$

As ϕ is continuous, for any $\epsilon > 0$, there exists some $\delta > 0$ such that for $|\theta - \theta_0| < \delta$ we have $\phi(e^{i\theta}) - \phi(e^{i\theta_0})| < \epsilon$. Therefore,

$$|E(z)| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} |\phi(e^{i\theta}) - \phi(z_0)| d\theta$$

$$\leq \frac{1}{2\pi} \int_{|\theta - \theta_0| \geq \delta} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} 2Md\theta + \int_{|\theta - \theta_0| < \delta} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \epsilon d\theta \leq \frac{M}{\pi} \int_{|\theta - \theta_0| \geq \delta} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} d\theta + \epsilon,$$

where $M = \max_{z \in \partial D(0,1)} {\{\phi(z)\}}.$

Notice $|1 - ze^{-i\theta}| \ge \delta.33 - |e^{i\theta_0} - |z|e^{i\theta_0}|$. So

$$|E(z)| \le \frac{1}{2\pi} \frac{1}{2\pi} \int_0^{2\pi} \frac{2(\delta/6)^2 \epsilon}{\delta/6} + \epsilon \to 0,$$

as desired.

(c) Harnack's Inequality

Let u be a nonnegative harmonic function on D(0,R). Then for $z \in D(0,R)$,

$$\frac{R - |z|}{R + |z|}u(0) \le u(z) \le \frac{R + |z|}{R - |z|}u(0).$$

Proof:

Without loss of generality, we may assume u is continuous on the boundary. Recall

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} d\theta.$$

Now

$$\frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} \le \frac{R^2 - |z|^2}{(R - |z|)^2} = \frac{R + |z|}{R - |z|}.$$

From these two above equations, we have

$$u(z) \le \frac{R+|z|}{R-|z|} \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) d\theta = \frac{R+|z|}{R-|z|} u(0).$$

Similarly, note that

$$\frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} \ge \frac{R^2 - |z|^2}{(R + |z|)^2} = \frac{R - |z|}{R + |z|},$$

which yields the other inequality.

(d) Corollary

Let u be a positive harmonic function in a domain D. For any compact $K \subset D$ there exists a constant C_K dependent only on K and D such that

$$\max\{u(z): z \in K\} \le C_K \min\{u(z): z \in K\}.$$

Proof:

Let $1 > \delta = \operatorname{dist}(\partial D, K)$. As K is compact, there exist finitely many points $z_1, \ldots, z_n \in K$ such that $\bigcup D(z_j, \delta)$ covers K. For any z_j and $z \in D(z_j, \delta) \cap K$, we have

$$u(z) \le \frac{1+|z|}{1-|z|}u(z_j) \le \frac{1+\delta}{1-\delta}u(z_j),$$

$$u(z) \ge \frac{1 - |z|}{1 + |z|} u(z_j) \ge \frac{1 - \delta}{1 + \delta} u(z_j).$$

Therefore

$$u(z) \le \frac{1+\delta}{1-\delta}u(z_j) = \left(\frac{1+\delta}{1-\delta}\right)^2 \frac{1-\delta}{1+\delta}u(z_j) \le \left(\frac{1+\delta}{1-\delta}\right)^2 u(z).$$

Let
$$C_K = \left(\frac{1+\delta}{1-\delta}\right)^2$$
. Then, we have

$$\max\{u(z): z \in K\} \le C_K \min\{u(z): z \in K\}.$$

(e) Harnack's Principle

Let $\{u_j\}$ be a sequence of harmonic functions on D such that for $z \in D$, $u_j(z) \le u_{j+1}(z)$. Then either $u_j \to \infty$ uniformly on compact sets, or there is a harmonic function u on U such that $u_j \to u$ uniformly on compact sets.

Proof:

Without loss of generality $u_n(z) \geq 0$, as otherwise we can replace this sequence with $v_n(z) = u_n(z) - u_1(z)$.

Let $z_0 \in D$. We have two cases.

Case 1: $\lim_{n\to\infty} u_n(z_0) = \infty$.

Then, for any $K \subset D$, by Harnack's Inequality, there is some $C_K > 0$ such that

$$u_n(z) \ge \frac{1}{C_K} u_n(z_0), z \in K,$$

So $\lim_{n\to\infty} u_n(z) = \infty$ uniformly on K.

Case 2: $dis \lim_{n\to\infty} u_n(z_0) = c_0 < \infty$. In this case, for any $K \subset D$ there exists some C_K' such that

$$u_n(z) \le C_K' u_n(z_0) \le C_K' c_0 < \infty.$$

Then $\lim_{n\to\infty}u_n(z)=:u(z)$ is finite. Let $K\to D$. Then there exists a function u on D such that $\lim_{n\to\infty}u_n(z)=u(z),$ for $z\in D$. Notice if m>n, $u_m(z)-u_n(z)\geq 0,$ so

$$0 \le u_m(z) - u_n(z) \le C_K (u_m(z) - u_n(z)) \to 0$$

as $m, n \to \infty, m > n$. By Cauchy's Test we have uniform convergence.

It remains to show u is harmonic in D.

Let $z_0 \in D$, $r < \text{dist}(z_0, \partial D)$. Consider $D(z_0, r)$.

$$u_n(z_0 + rz) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} u_n(z_0 + re^{i\theta}) d\theta, z \in D(0, 1)$$

. Letting $n \to \infty$, we have by uniform convergence

$$u(z_0 + rz) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} u(z_0 + rei\theta) d\theta$$

is harmonic at z_0 . Therefore u is harmonic on D.

(f) Example

Show that if $f: D(0,1) \to D(0,1)\setminus\{0\}$ is a holomorphic function, then $\max\{|f(z)|^2: |z| \le 1/5\} \le 1/5$ $\min\{|f(z)|:|z|\leq 1/7\}$ and furthermore find a f(z) to show that this inequality is sharp.

As f is holomorphic and nonzero, $\ln |f(z)|$ is harmonic. Consider the harmonic function u(z) = $-ln|f(z)| \ge 0$ is harmonic on D(0,1). We apply Harnack's Inequality to u to obtain

$$\frac{1-|z|}{1+|z|}(-\ln|f(z)|) \le -\ln|f(z)| \le \frac{1+|z|}{1-|z|}(-\ln|f(0)|).$$

Exponentiating this yields

$$e^{\frac{1-|z|}{1+|z|}}\frac{1}{|f(0)|} \leq \frac{1}{|f(z)|} \leq e^{\frac{1+|z|}{1-|z|}}\frac{1}{|f(0)|}.$$

Notice then we have

$$|f(z)| \ge e^{-\frac{1+|z|}{1-|z|}} |f(0)|,$$

so for $|z| \leq 1/7$, as a minimal value

$$\min\{|f(z)|\} \ge e^{-\frac{1+1/7}{1-1/7}}|f(0)| = e^{-4/3}|f(0)|.$$

Similarly, we have

$$\frac{1-|z|}{1+|z|}(-2\ln|f(z)|) \le -\ln|f(z)^2| \le \frac{1+|z|}{1-|z|}(-2\ln|f(0)|),$$

or

$$|f(z)|^2 \le e^{-2\frac{1-|z|}{1+|z|}}|f(0)|,$$

which on $|z| \leq 1/5$, reduces to

$$\max\{|f(z)|^2\} \le e^{-2\frac{1-1/5}{1+1/5}}|f(0)| = e^{-4/3}|f(0)|,$$

which gives us the desired result.

To show that the bound is sharp, consider the function

$$q(z) = e^{-\frac{1-z}{1+z}}.$$

Then $\min\{g(z): |z| \le 1/7\} = e^{-\frac{1+1/7}{1-1/7}} = e^{-4/3}$. Similarly, $\max\{g(z)^2: |z| \le 1/5\} = e^{-2\frac{1-1/5}{1+1/5}} = e^{-4/3}$.

(g) Maximum Principle for Harmonic Functions

If u is harmonic in D and there is some $z_0 \in D$ such that $u(z_0) \ge u(z)$ for $z \in D$ then $u(z) \cong u(z_0)$.

Proof:

By the Mean-Value Property

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta, 0 \le r < \text{dist}(\partial D, z_0),$$

so

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \left(u(z_0 + re^{i\theta}) - u(z_0) \right) d\theta.$$

As $u(z_0) \ge u(z_0 + re^{i\theta})$ for all r, θ , by continuity, we have

$$u(z_0) = u(z_0 + re^{i\theta})$$

for all r, θ . Therefore, for any $z \in D$, as D is open and connected, there exists a path $\gamma_z : [0, 1] \to D$ such that $\gamma_z(0) = z_0, \ \gamma_z(1) = z$ and overlapping discs on points z_1, \ldots, z_k of γ_z with radii r_i respectively. As we get equality in each disc, by transitivity, we get $u(z_0) = u(z)$.

(h) Automorphisms of Annuli

Define $A(0;1,R) = \{z \in \mathbb{C} : 1 < |z| < R\}$. $A(0;1,R_1)$ and $A(0;1,R_2)$ are biholomorphically equivalent if and only if $R_1 = R_2$, where $R_1, R_2 > 1$.

Proof

If we assume $R_1 = R_2$ the result holds as the identity map suffices.

Conversely, assume there exists a biholomorphic map $\phi: A(0;1,R_1) \to A(0;1,R_2)$. ϕ^{-1} is continuous, so ϕ is proper, therefore $\phi: \partial A(0;1,R_1) \to \partial A(0;1,R_2)$. We claim $\phi(\partial D(0,1)) = \partial D(0,1)$ and $\phi(\partial D(0,R_1)) = \partial D(0,R_2)$ or $\phi(\partial D(0,1)) = \partial D(0,R_2)$ and $\phi(\partial D(0,R_1)) = \partial D(0,1)$. This holds as the continuous image of a connected set is connected since if otherwise, by connectedness, without loss of generality (the other case is identical) $\phi(\partial D(0,1)) \subset \partial D(0,1)$. Then if $\partial D(0,1) \cap \phi(\partial D(0,R_1)) \neq \emptyset$, we have $\phi(\partial D(0,R_1))$ is not connected as $\partial D(0,R_2) \subset \phi(\partial D(0,R_1))$. Assume first the case where $|\phi(z)| = 1$ for |z| = 1 and $|\phi(z)| = R_2$ for $|z| = R_1$. Consider

$$u(z) = \log|\phi(z)| - \frac{\log R_2}{\log R_1} \log|z|.$$

Then u(z) = 0 when |z| = 1 or $|z| = R_1$. By the Maximum and Minimum Principles, $u(z) \equiv 0$ on $A(0; 1, R_1)$. Therefore

$$\log \left| \frac{\phi(z)}{\frac{\log R_2}{\log R_1}} \right| = 0 \implies \left| \frac{\phi(z)}{\frac{\log R_2}{z^{\log R_1}}} \right| = 1,$$

or after simplification, $\phi(z) = e^{i\theta} z^{\frac{\log R_2}{\log R_1}}$. As ϕ is holomorphic, $\log R_2/\log R_1$ is an integer. As ϕ is injective, $\log R_2/\log R_1 = 1$, i.e. $R_1 = R_2$ as desired. So biholomorphic maps in this case are of the form $\phi(z) = e^{i\theta} z$.

Assume now that $|\phi(z)| = R_2$ for |z| = 1 and $|\phi(z)| = 1$ for $|z| = R_1$. Consider $\psi(z) = \phi(R_1/z)$. Then $|\psi(z)| = 1$ for |z| = 1 and $|\psi(z)| = R_2$ for $|z| = R_1$. As we have seen above, $\psi(z) = e^{i\theta}z$ and $R_1 = R_2$. Therefore $\phi(z) = e^{i\theta}R_1/z$.

13. Sub-harmonic Functions (a) Definition 1

 $u \in C^2(D)$ is sub-harmonic if $\Delta u \geq 0$.

(b) Definition 2

u is sub-harmonic if

 $\mathbf{i.}\ u$ is Upper Semi-Continuous,

ii.
$$u(z) \leq \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{i\theta}) d\theta$$
 for appropriate r .

(c) Sub-harmonic Functions

For $u \in C^2(D)$, these two definitions are equivalent.

Proof:

Assume first that $\Delta u \geq 0$. By Green's Theorem, for n normal to ∂D at z,

$$\int_{\partial D} \frac{\partial u}{\partial n} v d\sigma - \int_{\partial D} \frac{\partial v}{\partial n} u d\sigma = \int_{D} \Delta u v - \Delta v u dA.$$

So

$$\frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial}{\partial n} \log \frac{|z - z_0|}{r} \frac{1}{r} d\theta - \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial}{\partial n} u(z + re^{i\theta}) \log \frac{|z - z_0|}{r} \frac{1}{r} d\theta$$
$$= \frac{1}{r} \frac{1}{2\pi} \int_{D(z_0, r)} \Delta \log \frac{|z - z_0|}{r} u(z) - \Delta u \log \frac{|z - z_0|}{r} dA.$$

We have $\frac{1}{2\pi} \log \frac{|z-z_0|}{r} = \delta_{z_0}$, so

$$\frac{1}{r} \frac{1}{2\pi} \int_{D(z_0,r)} \Delta \log \frac{|z-z_0|}{r} u(z) - \Delta u \log \frac{|z-z_0|}{r} dA = u(z_0) + \frac{1}{2\pi} \int_{D(z_0,r)} \Delta u \log \frac{|z-z_0|}{r} DA \ge u(z_0).$$

Assume now that $u(z_0) \leq \frac{1}{2\pi} \int_0^2 \pi u(z_0 + re^{i\theta}) d\theta$ for all $r < \text{dist}(z_0, \partial D)$. By the identity established in what we have shown above,

$$\frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta = u(z_0) + \frac{1}{2\pi} \int_{D(z_0, r)} \Delta u \log \frac{r}{|z - z_0|} dA.$$

Therefore we know that

$$0 \le \frac{1}{2\pi} \int_{D(z_0, r)} \Delta u \log \frac{r}{|z - z_0|} dA.$$

We claim $\Delta u(z_0) \ge 0$ for all $z_0 \in D$. If not, then fix z_0 such that $\Delta u(z_0) < 0$. Then there exists an $r_0 < r$ such that $\Delta u(z) < -\epsilon_0$ for $z \in D(z_0, r_0)$. Then we have

$$0 \le \int_{D(z_0, r_0)} \Delta u \log \frac{r_0}{|z - z_0|} dA \le -\epsilon_0 \int_{D(z_0, r_0)} \log \frac{r_0}{|z - z_0|} dA < 0,$$

a contradiction. This proves our claim.

(d) Jensen's Inequality

If u is subharmonic and ϕ is convex on the range of u then

$$\phi\left(\frac{1}{2\pi}\int_0^{2\pi}u(z+re^{i\theta})d\theta\right)\leq \frac{1}{2\pi}\int_0^{2\pi}\phi\circ u(z+re^{i\theta})d\theta.$$

Proof:

We have

$$\phi\left(\frac{1}{2\pi}\int_0^{2\pi}u(z+re^{i\theta})d\theta\right)=\phi\left(\sum_{k=1}^nu(z+re^{i\theta_k}\Delta\theta_k)\right)\leq \sum_{k=1}^\infty\phi\left(\sum_{k=1}^nu(z+re^{i\theta_k})\right)\Delta\theta_k=\frac{1}{2\pi}\int_0^{2\pi}\phi\circ u(z+re^{i\theta})d\theta.$$

(e) Examples of Subharmonic functions

 $\log |f|$ is subharmonic

(f) Hadamard Three-Line Theorem

Let f be holomorphic on $S(a,b) = \{x+iy : a < x < b\}$ and define $M(x,f) = \max\{|f(z)| : \operatorname{Re}(z) = x\}$. Assume $M(a,f), M(b,f) < \infty$. Then if $|f(z)| \le Be^{A|z|}$ on S(a,b), for real numbers A,B, then M(x,f) is finite and $\log(M(x,f))$ is convex.

Proof:

The proof proceeds by cases.

Case 1: Assume f(z) is bounded on S(a,b). Then there is some $M < \infty$ such that |f(z)| < M. Therefore M(x,f) < M for $x \in [a,b]$. It remains to show that $\log M(x,f)$ is convex. $\log M(x,f)$ is convex if, since we may write $x = \frac{b-x}{b-a}a + \frac{x-a}{b-a}b$,

$$\log M(x, f) \le \frac{b - x}{b - a} \log M(a, f) + \frac{x - a}{b - a} \log M(b, f).$$

Notice that this is equivalent to

$$|f(x+iy)| \le M(x,f) \le M(a,f)^{\frac{b-x}{b-a}} M(b,f)^{\frac{x-a}{b-a}},$$

for $y \in \mathbb{R}, x \in [a, b]$. This, in turn, is equivalent to

$$\left| f(z)M(a,f)^{-\frac{b-z}{b-a}}M(b,f)^{\frac{z-a}{b-a}} \right| \le 1$$

since $|a^z| = a^x$.

Define $q(z) = f(z)M(a, f)^{\frac{b-z}{b-a}}M(b, f)^{\frac{z-a}{b-a}}$. Then

$$|g(a+iy)| = |f(a+iy)|M(a,f)^{-1} \le 1,$$

$$|g(a+iy)| = |f(b+iy)|M(b,f)^{-1} \le 1.$$

Define now $g_{\epsilon}(z) = g(z) \frac{1}{1+\epsilon z}$ for some $\epsilon > 0$. Then $|g_{\epsilon}(a+iy)| \leq 1$, $|g_{\epsilon}(b+iy)| \leq 1$. For $x \in [a,b], |y| >> 1$. Then

$$|g_{\epsilon}(x+iy)| \le MM(a,f)^{-\frac{b-x}{b-a}}M(b,f)^{-\frac{a-x}{b-a}}\frac{1}{\epsilon|y|} \le M\min\{M(a,f),M(b,f)\}^{-1}\frac{1}{\epsilon|y|},$$

for $y \ge \frac{1}{\epsilon} M \min\{M(a,f), M(b,f)\}^{-1}$. Then, by the Maximum Modulus Principle, $|g_{\epsilon}(z)| \le 1$ on S(a,b). Letting $\epsilon \to 0^+$, we have $|g(z)| \le 1$, which proves our claim. Case 2: $|f(z)| \le Be^{A|z|}$.

Consider the function

$$g_{\epsilon}(z) = f(z)M(a,f)^{-\frac{b-z}{b-a}}M(b,f)^{-\frac{a-z}{b-a}}e^{\epsilon z^{2}}.$$

Then we have

$$|g_{\epsilon}(a+iy)| \le 1|e^{\epsilon(a+iy)^2} = e^{\epsilon(a^2-y^2)} \le e^{\epsilon a^2},$$

and similarly

$$|g_{\epsilon}(b+iy)| \le e^{\epsilon b^2}.$$

For $x \in [a, b], |y| >> 1$ we have

$$|g_{\epsilon}(x+iy)| = |f(z)|M(a,f)^{-\frac{b-x}{b-a}}M(b,f)^{-\frac{x-a}{b-a}}e^{\epsilon(x^2-y^2)} \le Be^{A|z|}\min\{M(a,f),M(b,f)\}^{-1}e^{\epsilon b^2-\epsilon y^2}$$
$$= Be^{A(b+|y|)+\epsilon b^2-\epsilon y^2}\min\{M(a,f),M(b,f)\}^{-1} \le 1$$

for y appropriately large. Therefore, $|g_{\epsilon}(z)| \leq e^{\epsilon b^2}$ for $z \in S(a,b)$. Letting $\epsilon \to 0^+$ yields

$$|f(z)|M(a,f)^{-\frac{b-z}{b-a}}M(b,f)^{-\frac{a-z}{b-a}} \le 1$$

for $z \in S(a, b)$ as desired.

(g) Hadamard Three-Circle Theorem

Let f(z) be holomorphic in A(0; r, R) and define $M(r, f) = \max\{|f(re^{i\theta})| : \theta \in [0, 2\pi)\}$,. If $M(r, f), M(R, f) < \infty$, then $\log M(e^t, f)$ is convex on $(\log r, \log R)$.

Proof

Let $S = \{x + iy : y \in \mathbb{R}, \log r < x < \log R\}$ and define F to be

$$F(z) = f(e^z),$$

so F is holomorphic on S and $|F(z)| = |f(e^z)|$. Then we have $|F(\log r + iy)| = |f(re^{iy})| \le M(r, f)$ and similarly $|F(\log R + iy)| \le M(R, f)$. Then, by the previous theorem, we have

$$|f(r_0e^{it})| = |F(\log r_0 + it)| \le M(a, f)^{\frac{\log R - \log r_0}{\log R - \log r}} M(b, f)^{\frac{\log r_0 - \log r}{\log R - \log r}}$$

14. Jensen's Formula (a) Jensen's Formula

Let f be holomorphic in $\overline{D(0,R)}$, $f(z) \neq 0$ for $z \in \partial D(0,R)$ and $f(0) \neq 0$. Then, if a_1, \ldots, a_n are the zeros of f in D(0,R) counting multiplicity, then

$$\log|f(0)| + \sum_{k=1}^{n} \log \frac{R}{|a_k|} = \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(re^{i\theta})| d\theta.$$

Proof:

Let

$$g(z) = \frac{f(z)}{\prod_{j=1}^{n} \left(\frac{R(z-a_j)}{R^2 - \overline{a_j}z}\right)}.$$

Then $g(z) \neq 0$ for $z \in \overline{D(0,R)}$ and

$$|g(Re^{i\theta})| = \frac{|f(Re^{i\theta})|}{\prod_{j=1}^{n} \left| \frac{R(z-a_j)}{R^2 - \overline{a_j}z} \right|} = |f(Re^{i\theta}).$$

By the Mean-Value Property,

$$\log |g(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |g(Re^{i\theta})| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\theta})| d\theta.$$

Further

$$\log|g(0)| = \log\left|\frac{f(0)}{\prod_{j=1}^{n} \frac{|a_j|}{R}}\right| = \log|f(0)| + \sum_{j=1}^{n} \log\frac{R}{|a_j|},$$

completing the proof.

(b) Application of Jensen's Formula

Let $f: D(0,1) \to D(0,1)$ be holomorphic and $f(0) = 2^{-10}$. What is the best upper bound for the number of zeros of f in $\overline{D(0,1/2)}$?

Solution:

Let 1/2 < r < 1 and a_1, \ldots, a_n be all the zeros of f in D(0, r) such that $f(re^{i\theta}) \neq 0$. By Jensen's Formula

$$\log |f(0)| + \sum_{i=1}^{n} \log \frac{r}{|a_{i}|} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta})| d\theta < 0,$$

so

$$\sum_{j=1}^{n} \log \frac{r}{|a_j|} < -\log |f(0)| = 10 \log 2.$$

Without loss of generality, the zeros of f in $\overline{D(0,1/2)}$ are $a_1,\ldots,a_k,\ k\leq n$. Then

$$\sum_{i=1}^{k} \frac{r}{|a_i|} \le \sum_{i=1}^{n} \log \frac{r}{|a_i|} \le 10 \log 2.$$

For $a_j \in \overline{D(0, 1/2)}$, $\log \frac{r}{|a_j|} \ge \log \frac{r}{1/2}$, so

$$10\log 2 \ge \sum_{i=1}^{k} \log \frac{r}{|a_i|} \ge k \log \frac{r}{1/2},$$

or after simplification, we have

$$k \le 10 \frac{\log 2}{\log 2r}$$
, for all $1/2 < r < 1$.

Letting $r \to 1^-$, we have $k \le 10$.

15. Special Functions

(a) The Gamma Function

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt,$$

which is holomorphic for Re(z) > 0. Note by integrating by parts, we get

$$\Gamma(z) = \frac{1}{z}\Gamma(z+1),$$

and continuing in this method, we get

$$\Gamma(z)\frac{1}{z(z+1)\cdots(z+n)}\Gamma(z+n+1),$$

which defines a meromorphic function on Re(z) > -(n+1) with simple poles at $z = 0, -1, -2, \dots, -n$ for any positive integer n.

Note also, that $\Gamma(n) = (n-1)!$ for positive integer values n, so

$$\operatorname{Res}(\Gamma(z); z = -k) = \lim_{z \to -k} \frac{z - k}{z \cdots (z + k)} \Gamma(z + k + 1) = \frac{1}{(-k)(-k + 1) \cdots (-k + k - 1)} \Gamma(1) = \frac{(-1)^k}{k!}.$$

(b) The Riemann Zeta Function

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z},$$

for Re(z) > 1.

 $\zeta(z)$ can be extended to a meromorphic function with a simple pole only at z=1 and with residue 1 there.

 $\zeta(z)$ also satisfies the following functional equation:

$$\zeta(z) = 2^{z} \pi^{z-1} \sin\left(\frac{\pi z}{2}\right) \Gamma(1-z) \zeta(1-z).$$