FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS

TIMUR OIKHBERG

Abstract. For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Y of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Y. If H satisfies certain conditions, we also prove that every completely bounded map on such Y is a compact perturbation of a scalar.

1. Introduction and the main result

In [GM], T. Gowers and B. Maurey gave the first example of a hereditarily indecomposable Banach space Z (recall that an infinite dimensional space Z is called hereditarily indecomposable if it is not isomorphic to a direct sum of two infinite dimensional Banach spaces). Since then, a variety of hereditarily indecomposable Banach spaces were constructed. An overview of the current state of affairs is given in [M].

A non-commutative counterpart of this space was obtained by E. Ricard and the author in [OR]. There, we gave an example of an operator space X, isometric to ℓ_2 (as a Banach space), such that an operator $T : Y \to X$ (Y being a subspace of X) is completely bounded if and only if $T = \lambda J_Y + S$, where J_Y is the natural embedding, $\lambda \in \mathbb{C}$, and S is a Hilbert-Schmidt map. In particular, X is completely hereditarily indecomposable – that is, no infinite dimensional subspace $Y \hookrightarrow X$ is completely isomorphic to an ℓ_∞ sum of two infinite dimensional operator spaces. Moreover, X fails the Operator Approximation Property (see below for the definition). For any n-dimensional subspace $Y \hookrightarrow X$, there exists a unitary $U : Y \to Y$ s.t. $\|U\|_{cb} \geq \sqrt{n}/16$.

Our present goal is to construct completely hereditarily indecomposable operator spaces with “some structure” – that is, spaces which are saturated with “nice” finite dimensional subspaces. More precisely, for any homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that:

Date: May 5, 2006.
1991 Mathematics Subject Classification. 46L07, 47L25, 46B20.
The author was partially supported by the NSF.
• For any infinite dimensional subspace \(Y \) of a quotient of \(X \), \(n \in \mathbb{N} \), and \(\varepsilon > 0 \), there exists a subspace \(F \hookrightarrow Y \) which is \((1+\varepsilon)\)-completely isomorphic to an \(n \)-dimensional subspace of \(H \).

• Any \(Y \) as above is completely hereditarily indecomposable, and fails the Operator Approximation Property.

If \(H \) satisfies certain conditions, then, in addition, any c.b. map on \(Y \) is a compact perturbation of a scalar.

Below we recall some facts and definitions concerning operator spaces. For more information, the reader is referred to [ER], [Pa], or [Pi].

We say that an operator space is \(c \)-Hilbertian if its underlying Banach space is \(c \)-isomorphic to a Hilbert space. \(X \) is \(c \)-homogeneous if \(\|T\|_{cb} \leq c \|T\| \) for any \(T \in B(X) \). An infinite dimensional operator space \(X \) is called completely indecomposable if it is not completely isomorphic to an \(\ell_\infty \) direct sum of two infinite dimensional operator spaces (equivalently, any c.b. projection on \(X \) has finite dimensional kernel, or finite dimensional range).

We use the term subquotient to mean a subspace of a quotient.

An operator space \(X \) is said to have the Operator Approximation Property (OAP, for short) if, for any \(x \in K \otimes X \) and \(\varepsilon > 0 \), there exists a finite rank map \(T : X \rightarrow X \) s.t. \(\|(I_K \otimes T)x - x\| < \varepsilon \) (here \(K \) is the space of compact operators on \(\ell_2 \), and \(\otimes \) denotes the minimal (injective) tensor product). \(X \) has the Compact Operator Approximation Property (COAP) if, for any \(x \in K \otimes X \) and \(\varepsilon > 0 \), there exists a compact map \(T : X \rightarrow X \) s.t. \(\|(I_K \otimes T)x - x\| < \varepsilon \). More details about the OAP, as well as several equivalent reformulations of this property, can be found in Chapter 11 of [ER].

The complete Banach-Mazur distance between the operator spaces \(X \) and \(Y \) is defined as

\[
d_{cb}(X, Y) = \inf \{ \|T\|_{cb} \|T^{-1}\|_{cb} \mid T \in CB(X, Y) \}.
\]

We say that an operator space \(Y \) is \(c \)-completely finitely representable in \(X \) if for any finite dimensional subspace \(Z \hookrightarrow Y \) there exists \(W \hookrightarrow X \) s.t. \(d_{cb}(W, Z) \leq c \). \(Y \) is called \(c \)-completely complementably finitely representable in \(X \) if for any finite dimensional subspace \(Z \hookrightarrow Y \) there exists a projection \(P \in CB(X) \) s.t. \(\|P\|_{cb} \leq c \), and \(d_{cb}(P(X), Z) \leq c \).

If \(H \) is a 1-homogeneous 1-Hilbertian operator space, we denote by \(H_n \) the \(n \)-dimensional operator space, completely isometric to (any) \(n \)-dimensional subspace of \(H \). We say that \(H \) has property \((P) \) if there exists a sequence \((m(n)) \subset \mathbb{N} \) s.t.

\[
\lim_{n \to \infty} \frac{1}{n} \|id : \text{MIN}_{m(n)}(R_n + C_n) \rightarrow H_n\|_{cb} = 0.
\]
Here, \(id \) is the formal identity map between \(n \)-dimensional Hilbert spaces, and the space \(\text{MIN}_k(X) \) (\(X \) being an operator space) is such that

\[
\|x\|_{K \otimes \text{MIN}_k(X)} = \sup\{\|I_K \otimes u(x)\|_{K \otimes M_k} \mid u \in CB(X, M_k), \|u\|_{cb} \leq 1\},
\]

where, as usual, \(M_k \) stands for the pace of \(k \times k \) matrices. The reader is referred to [OR] for more information about \(\text{MIN}_k \). For future reference, we need to consider a special case of the functor \(\text{MIN}_k \) – namely, \(\text{MIN}_1 \) (denoted by \(\text{MIN} \) for the sake of brevity). If \(X \) is a Banach or operator space, and \(x \in K \otimes X \), then

\[
\|x\|_{K \otimes \text{MIN}(X)} = \sup\{\|I_K \otimes f(x)\|_K \mid f \in X^*, \|f\|_{cb} \leq 1\}.
\]

In other words, if \(a_1, \ldots, a_n \in K \), and \(x_1, \ldots, x_n \in X \), then

\[
\|\sum a_i \otimes x_i\|_{K \otimes \text{MIN}(X)} = \sup\{\|\sum f(x_i)a_i\|_K \mid f \in X^*, \|f\|_{cb} \leq 1\}.
\]

Note that, for any 1-homogeneous 1-Hilbertian space \(H \), \(\|id : \text{MIN}(\ell_2^n) \to H_n\|_{cb} \geq \|id : \text{MIN}_{m,n}(R_n + C_n) \to H_n\|_{cb} \), hence \(H \) has property (P) whenever \(\lim \sup_n \|id : \text{MIN}(\ell_2^n) \to H_n\|_{cb} / n = 0 \). In particular (by Chapter 10 of [Pi]), the spaces \(OH, R + C \), and \(R \cap C \) have (P). To describe another large class of spaces possessing (P), recall that an operator space \(X \) is exact if there exists \(C > 0 \) such that for any finite dimensional subspace \(E \hookrightarrow X \) there exists \(F \hookrightarrow M_N \) s.t. \(d_{cb}(E, F) \leq C \). The infimum of all such constants \(C \) is called the exactness constant of \(X \), and denoted by \(\text{ex}(X) \). Observe that \(H \) has property (P) if \(\lim_{n \to \infty} \text{ex}(H_n) / \sqrt{n} = 0 \). Indeed, by Smith’s Lemma (Proposition 8.11 of [Pa]), there exists a sequence of positive integers \(r(1) < r(2) < \ldots \) s.t., for every operator space \(X \), and every \(v \in CB(X, H_n) \),

\[
\|v : X \to H_n\|_{cb} \leq 2\text{ex}(H_n)\|I_{M_{r(n)}} \otimes v : M_{r(n)} \otimes X \to M_{r(n)} \otimes H_n\|
\]

(we could have used \(1 + \varepsilon \) instead of 2). Then, by [OR],

\[
(2\text{ex}(H_n))^{-1}\|id : \text{MIN}_{r(n)}(R_n + C_n) \to H_n\|_{cb} \leq \|I_{M_{r(n)}} \otimes id : M_{r(n)} \otimes \text{MIN}_{r(n)}(R_n + C_n) \to M_{r(n)} \otimes H_n\| = \|I_{M_{r(n)}} \otimes id : M_{r(n)} \otimes (R_n + C_n) \to M_{r(n)} \otimes H_n\| \leq \|id : R_n + C_n \to H_n\|_{cb}.
\]

However, by Theorem 10.6 of [Pi],

\[
\|id : R_n + C_n \to H_n\|_{cb} \leq \|id : R_n + C_n \to \text{MAX}(\ell_2^n)\|_{cb} = \sqrt{n}.
\]

This establishes property (P).

The main result of this paper is

Theorem 1.1. Suppose \(H \) is a separable 1-homogeneous 1-Hilbertian operator space. Then there exists a separable 1-Hilbertian operator space \(X \) such that for every infinite dimensional subspace \(Y \) of \(X \) we have:

1. For any \(\varepsilon > 0 \), \(H \) is \((1 + \varepsilon) \)-completely complementably finitely representable in \(Y \).
2. \(Y \) is completely indecomposable.
(3) Y fails the Compact Operator Approximation Property.

(4) If H has property (P), then every completely bounded map on Y is a compact perturbation of a scalar.

Clearly, the COAP implies the OAP. By Chapter 11 of [ER], the OAP passes from an operator space to its predual. Therefore, dualizing the space X constructed in Theorem 1.1, we conclude:

Corollary 1.2. Suppose H is a separable 1-homogeneous 1-Hilbertian operator space, whose dual H^* has property (P). Then there exists a separable 1-Hilbertian operator space X such that for every infinite dimensional subquotient Y of X we have:

1. For any $\varepsilon > 0$, H is $(1 + \varepsilon)$-completely complementably finitely representable in Y.
2. Y is completely indecomposable.
3. Y fails the Operator Approximation Property.
4. Every completely bounded map on Y is a compact perturbation of a scalar.

In Section 2, we present a modification of the construction of asymptotic sets on the unit sphere of ℓ_2 (initially due to E. Odell and T. Schlumprecht [OS1]). In Section 3, we use these asymptotic sets to construct the space X from Theorem 1.1. Furthermore, we establish that all infinite dimensional subquotients of X are completely indecomposable, and H is completely complementably finitely representable in all such subquotients. In Section 4 we prove that all infinite-dimensional subquotients of X fail the OAP. Finally, in Section 5 we show that any c.b. map on an infinite dimensional subquotient of X is a compact perturbation of a scalar multiple of the identity, provided H has property (P).

2. **Asymptotic sets in ℓ_2**

First we recall some Banach space notions, to be used in this and subsequent sections. All spaces are presumed to be infinite dimensional, unless stated otherwise. For a space X, $B_X = \{ x \in X \mid \| x \| \leq 1 \}$ and $S_X = \{ x \in X \mid \| x \| = 1 \}$ stand for the unit ball and the unit sphere of X, respectively.

We say that a sequence $(\delta_i)_{i=1}^\infty$ is a basis in a Banach space X if for every $x \in X$ there exists a unique sequence of scalars (a_i) s.t. $x = \sum_{i=1}^\infty a_i \delta_i$. Equivalently (see e.g. Proposition 1.a.3 of [LT]), the projections $P_n \in B(X)$, defined via $P_n(\sum_{i=1}^\infty a_i \delta_i) = \sum_{i=1}^n a_i \delta_i$, are well defined, and $\sup_n \| P_n \| < \infty$. If E is a finite subset of \mathbb{N}, we write $E(\sum_{i=1}^\infty a_i \delta_i) = \sum_{i \in E} a_i \delta_i$. The support of $a = \sum_{i=1}^\infty a_i \delta_i$ (denoted by $\text{supp} a$) is the set of $i \in \mathbb{N}$ for which $a_i \neq 0$.

If E and F are finite subsets of \mathbb{N}, we write $E < F$ if $\max E < \min F$. If a Banach space X has a basis $(\delta_i)_{i \in \mathbb{N}}$, we write $a < b$ ($a, b \in X$) if $\text{supp} a < \text{supp} b$.
The basis \((\delta_i)_{i=1}^\infty\) is called 1-subsymmetric if \(\|\sum_i a_i \delta_i\| = \|\sum_i \omega_i a_i \delta_i\|\) for any finite sequence \((a_i)\), any \((\omega_i)\) with \(|\omega_i| = 1\), and any increasing sequence \(n_1 < n_2 < \ldots\) (sometimes, the term “1-unconditional 1-subsymmetric” is used to describe bases with this property).

For \(S_1, S_2 \subset X\), we set \(\text{dist}(S_1, S_2) = \inf\{\|x_1 - x_2\| \mid x_1 \in S_1, x_2 \in S_2\}\).

A set \(A \subset X\) is called asymptotic if, for every infinite dimensional \(Y \subset X\), \(\text{dist}(A, Y) = 0\). If \((\delta_i)_{i\in\mathbb{N}}\) is a 1-subsymmetric basis for \(X\), we say that \(A \subset X\) is spreading (unconditional) if, for any \(\sum_{i=1}^{\infty} a_i \delta_i \in A\), we have \(\sum_{i=1}^{\infty} a_i \delta_i \in A\) for any \(n_1 < n_2 < \ldots\) (resp. \(\sum_{i=1}^{\infty} \omega_i a_i \delta_i \in A\) for any \(|\omega_i| = 1\)).

The idea of constructing a sequence of asymptotic sets, satisfying certain conditions, was used by E. Odell and T. Schlumprecht in [OS1] in order to prove that \(\ell_p\) is distortable for \(1 < p < \infty\). Below we prove a sharper version of one of their results.

Theorem 2.1. Suppose \(\varepsilon_1 > \varepsilon_2 > \ldots\) is a sequence of positive numbers, and \((K_i)_{i=1}^{\infty}\) is a sequence of positive integers. Then there exists a sequence of asymptotic spreading unconditional sets \(A_1, A_2, \ldots\), consisting of unit vectors in \(\ell_2\) with finite support, such that

\[
\sum_{k=1}^{K_n} |\langle a, b_k \rangle|^2 < \varepsilon_m^2
\]

whenever \(m < n\), \(a \in A_m\), \(b_1, \ldots, b_{K_n} \in A_n\), and \(b_1 < \ldots < b_{K_n}\).

The Schlumprecht space \(S\) is essential for proving this theorem. Recall (see [GM, OS1, OS2, S]) that \(S\) has a 1-subsymmetric basis \((\delta_i)_{i=1}^{\infty}\), and

\[
\|\sum_i a_i \delta_i\| = \sup\{\sup_i |a_i|, \sup_{n\geq 2, E_1 < \ldots < E_n} \frac{1}{\phi(n)} \sum_{j=1}^{n} \|\sum_i a_i \delta_i\|\}
\]

(here \(\phi(t) = \log(t + 1)\)). Using the ideas of [OS1], we first present “nice” sets in \(S\) and its dual.

Lemma 2.2. Suppose \(\sigma_1 > \sigma_2 > \ldots\) is a sequence of positive numbers, and \((K_i)_{i=1}^\infty\) is a sequence of positive integers. Then there exist spreading unconditional sets \(B_1, B_2, \ldots \subset S\) and \(B'_1, B'_2, \ldots \subset B_{S'}\), consisting of vectors with finite support, such that:

1. \(B_n\) is asymptotic for every \(n\).
2. \(|\langle a, Eb \rangle| < \sigma_{\min\{m,n\}}\) if \(a \in B_n\), \(b \in B_m^\star\), and \(E \subset \mathbb{N}\).
3. For every \(a \in B_m\) there exists \(b \in B_m^\star\) satisfying \(|\langle a, b \rangle| > 1 - \sigma_m\).
4. Suppose \(m < n\), \(a \in B_m\), \(b_1, \ldots, b_{K_n} \in B_n^\star\), \(b_1 < \ldots < b_{K_n}\), and \(E_1 < \ldots < E_{K_n}\). Then \(\sum_{k=1}^{K_n} |\langle a, E_k b_k \rangle| < 2\sigma_m\).

Sketch of the proof. We rely on the construction from Section 2 of [GM] (summarized in [OS1] as Lemma 3.3). There, T. Gowers and B. Maurey show the existence of
a rapidly increasing sequence $p_k \nearrow \infty$, and a rapidly decreasing sequence $\sigma'_k \searrow 0$, with the following property: for $n \in \mathbb{N}$, define
\[
B^*_n = \left\{ \frac{1}{\phi(p_n)} \sum_{j=1}^{p_n} b_j \left| b_j \in S^*, \|b_j\| = 1, b_1 < \ldots < b_{p_n} \right\} \subseteq B_{S^*},
\]
and let B_n be the set of all $(\sum_{i=1}^{p_n} x_i)/\|\sum_{i=1}^{p_n} x_i\| \in S_S$, with constant $1 + \sigma'_n$ (we do not reproduce the definition of RIS, as it is quite cumbersome, and is not really necessary here; suffices to say that above, $x_1 < x_2 < \ldots < x_{p_n}$). Then the sets B_n and B^*_n are unconditional and spreading, and the statements (1), (2), and (3) of the lemma hold. It remains to prove (4).

By passing to a subsequence, we can assume that $\phi(K_n p_n) < 2\phi(p_n)$ for every n (recall that $\phi(t) = \log(t + 1)$). Suppose m, n, a, and $(b_k)_{k=1}^{K_n}$ are as in (4). The sets B_m and B^*_m are unconditional, hence it suffices to prove (4) when all the entries of a and (b_k) are non-negative, and $E_k = \text{supp } b_k$ for each k. In this situation, we have to show that $\langle a, \sum_{k=1}^{K_n} b_k \rangle < 2\sigma_m$. By construction,
\[
b_k = \frac{1}{\phi(p_n)} \sum_{j=1}^{p_n} b_{jk},
\]
where $b_{jk} \in B_{S^*}$ ($1 \leq j \leq p_n$) are such that $b_{1k} < \ldots < b_{p_n k}$. By passing from b_{jk} to $E_k b_{jk}$ if necessary, we can assume that $\text{supp } b_{jk} \subseteq \text{supp } b_k$ for each j, hence
\[
b_{11} < b_{21} < \ldots < b_{p_n 1} < b_{12} < \ldots < b_{p_n K_n}.
\]
Let
\[
\tilde{b} = \frac{1}{\phi(p_n K_n)} \sum_{k=1}^{K_n} \sum_{j=1}^{p_n} b_{jk} = \frac{1}{\phi(p_n K_n)} \sum_{k=1}^{K_n} b_k.
\]
By (2.2), $\|\tilde{b}\| \leq 1$, hence $\|\sum_{k=1}^{K_n} b_k\| \leq \phi(p_n K_n)/\phi(p_n) < 2$. Moreover, $a = \alpha \sum_{s=1}^{p_n} a_s$, where $\|a_s\| = 1$ for each s, $a_1 < a_2 < \ldots < a_{p_n}$, and $\alpha = \|\sum_{s=1}^{p_n} a_s\|$. By (2.2), $\alpha \leq \phi(p_m)/p_m$. By Lemma 5 of [GM] (and by the choice of sequences (p_n) and (σ'_n)), $\langle a, \tilde{b} \rangle \leq 2\alpha < \sigma_m$. Thus, $\langle a, \sum_{k=1}^{K_n} b_k \rangle < 2\sigma_m$, as desired. \blacksquare

Proof of Theorem 2.1. Below we view elements of S, S^*, and ℓ_2 as sequences (via the expansions with respect to the canonical bases of these spaces). Operations of multiplication etc. are defined pointwise.

Suppose $A_1, A_1^*, B_2, B_2^*, \ldots$ are as in the previous lemma, with $2\sigma_k/(1 - \sigma_k) < \varepsilon_k$. Define A_k as the set of vectors $x \in \ell_2$ for which $|x|^2 = ab/(a, b)$, with $a \in B_k$, $b \in B_k^*$, $a, b \geq 0$, and $(a, b) > 1 - \sigma_k$. It follows from [OS1] that the sets A_k are asymptotic, spreading, and unconditional. To show (2.1), suppose $m < n$, and consider non-negative $x, y_1, \ldots, y_{K_n} \in \ell_2$ s.t. $x^2 = ab$ and $y_k^2 = a_k b_k$ with $a \in B_m$, $b \in B_m^*$, $a_k \in B_n$, $b_k \in B_n^*$ (for $1 \leq k \leq K_n$), and $y_1 < y_2 < \ldots < y_{K_n}$. Let $E_k = \text{supp } y_k$. By
Cauchy-Schwartz Inequality,
\[\sum_k \langle x, y_k \rangle^2 = \sum_k \langle \sqrt{a_k} \sqrt{b_k} E_k a_k E_k b_k \rangle^2 \leq \sum_k \langle a, E_k b_k \rangle \langle a, E_k b \rangle. \]
By the previous lemma, \(\sum_k \langle a, E_k b_k \rangle < 2\sigma_m \) and \(\langle a, E_k b \rangle < \sigma_m \). Therefore,
\[\sum_k \left(\frac{x}{\|x\|} \cdot \frac{y_k}{\|y_k\|} \right)^2 \leq \frac{2\sigma_m^2}{(1 - \sigma_m)^2}. \]
This establishes (2.1).

3. Construction and basic properties of \(X \)

Construct a sequence of sets \(A_n \) as in Theorem 2.1, with \(\varepsilon_n = 239^{-n} \) and \(K_n = 10^n \). Let \((\delta_i)_{i=1}^N \) and \((\delta_i)_{i=1}^\infty \) be the canonical bases in \(\ell_2^N \) and \(\ell_2 \), respectively.

Denote by \(U \) the set of operators \(U : \ell_2 \to \ell_{2^n} \) (n even) of the form
\[U \xi = \sum_{j=1}^{K_n} \langle \xi, f_j \rangle \delta_j \] with \(f_1, \ldots, f_{K_n} \in A_n \), \(f_1 < \ldots < f_{K_n} \), or
\[U \xi = \frac{1}{\sqrt{2}} \sum_{j=1}^{K_n} \langle \xi, f_{j+i} + \varepsilon f_j \rangle \delta_j \] with \(f_1 < \ldots < f_{2K_n} \), \(\varepsilon = \pm 1 \), and either \(f_1, \ldots, f_{2K_n} \in A_n \), or \(f_1, \ldots, f_{K_n} \in A_n \), \(f_{K_n+1}, \ldots, f_{2K_n} \in A_{n+2} \) (in both cases, \(\xi \in \ell_2 \)). Let \((U_i) \) be a countable dense subset in \(U \) (that is, for every \(U \in U \) and every \(\varepsilon > 0 \) there exists \(i \in \mathbb{N} \) s.t. the range spaces of \(U \) and \(U_i \) coincide, and \(\| U - U_i \|_1 < \varepsilon \).

Denote by \(\mathcal{W} \) the set of operators \(W \in B(\ell_2) \) s.t. \(W \xi = \sum_{j=1}^{K_n} \langle \xi, f_j \rangle \delta_j \) for \(\xi \in \ell_2 \), where \(n \in \mathbb{N} \) is odd, and \(f_1 < \ldots < f_{K_n} \) belong to \(A_n \).

Following [OR], fix a sequence \(s_0 < s_1 < \ldots \) (increasing “sufficiently fast”), and define spaces \(E_i = \text{MIN}_{s_i}(\text{MAX}_{s_{i-1}}(R_{n_i} \cap C_{n_{i}})) \), for which:

1. \(n_i = 10^j \) for some \(j = j(i) \in \mathbb{N} \), and moreover, for each \(j \in \mathbb{N} \) the number \(100^j \) occurs infinitely many times in the sequence \((n_i) \).
2. For any operator \(u : E_i^* \to E_j \), we have \(\|u\|_1/5 \leq \|u\|_{cb} \leq \|u\|_1 \) if \(i = j \), \(\|u\|_{cb} = \|u\|_2 \) if \(i \neq j \).
3. If, in addition, \(H \) has property (P), then \(\lim_{j \to \infty} \gamma_j/100^j = 0 \), where
\[\gamma_j = \|id : \text{MIN}_{s_{i-1}}(R_{100^j} + C_{100^j}) \to H_{100^j}\|_{cb}, \] and \(i \) is the smallest integer satisfying \(n_i = 100^j \) (or in other words, \(i = \min\{k | j = j(k)\} \)). Consequently, \(\|id : E_i^* \to H_{100^j}\|_{cb} \leq \gamma_j \) for any \(i \).

Define the operator space \(X \) by setting, for \(x \in K \otimes \ell_2 \),
\[(3.1) \|x\|_{\kappa \otimes X} = \max \left\{ \|x\|_{\kappa \otimes \text{MIN}(\ell_2)}, \sup_{i \in \mathbb{N}} \| (I_{K \otimes U_i}) x \|_{\kappa \otimes E_i}, \sup_{W \in W} \| (I_{K \otimes W}) x \|_{\kappa \otimes H} \right\}. \]
(recall that, for \(x = \sum_i a_i \otimes \delta_i \in K \otimes \text{MIN}(\ell_2) \),
\[
\| x \|_{K \otimes \text{MIN}(\ell_2)} = \sup \{ \| \sum_i \alpha_i a_i \|_K \mid \sum_i |\alpha_i|^2 \leq 1 \}.
\]
It is easy to check that \(X \) satisfies Ruan’s axioms, hence it is an operator space.
Also, \(X \) is isometric to \(\ell_2 \). We shall show that it has all the desired properties. Start
by showing that elements of \(\mathcal{U} \) and \(\mathcal{W} \) “ignore” each other.

Lemma 3.1. If \(U \in \mathcal{U} \) and \(W \in \mathcal{W} \), then \(\| UW^* \|_1 \leq 1 \).

Proof. It suffices to prove that \(\| UV \|_1 \leq 1/2 \) when \(U \in B(\ell_2, \ell_2^{K_n}) \) and \(V \in B(\ell_2, \ell_2) \)
are given by
\[
(3.2) \quad U \xi = \sum_{j=1}^{K_m} \langle \xi, g_j \rangle \delta_j, \quad \text{and} \quad V \delta_i = \begin{cases} f_i & i \leq K_n \\ 0 & i > K_n \end{cases},
\]
where \(f_1 < \ldots < f_{K_n} \) belong to \(A_n \), and \(g_1 < \ldots < g_{K_m} \) belong to \(A_\ell \), for \(\ell \geq m \),
and \(n \not\in \{m, \ell\} \). Indeed, the adjoint of any element of \(\mathcal{W} \) equals \(V \) as above, while
any element of \(\mathcal{U} \) either equals to a \(U \) of the above form, or can be represented as
\((U_1 + U_2)/\sqrt{2} \), with \(U_1 \) and \(U_2 \) resembling \(U \) in (3.2). Note that, for \(U \) and \(V \) as in
(3.2),
\[
UV \delta_i = \begin{cases} \sum_{j=1}^{K_m} \langle f_i, g_j \rangle \delta_j & i \leq K_n \\ 0 & i > K_n \end{cases},
\]
and therefore,
\[
(3.3) \quad \| UV \|_2^2 = \sum_{i=1}^{K_n} \sum_{j=1}^{K_m} |\langle f_i, g_j \rangle|^2.
\]
To estimate \(\| UV \|_1 \), suppose first that \(n < \ell \). By construction of \(A_n \) and \(A_\ell \),
\[
\sum_{j=1}^{K_m} |\langle f_i, g_j \rangle|^2 < \varepsilon_n^2 \quad \text{for} \quad 1 \leq i \leq K_n.
\]
Therefore, by (3.3), \(\| UV \|_2^2 \leq K_n \varepsilon_n^2 \). Moreover, \(\text{rank} \ UV \leq \text{rank} \ U = K_n \), hence
\[
\| UV \|_1 \leq \sqrt{\text{rank} UV} \| UV \|_2 = K_n \varepsilon_n < \frac{1}{2},
\]
by our choice of \(K_n \) and \(\varepsilon_n \). If \(n > \ell \), we similarly obtain \(\| UV \|_1 \leq K_m \varepsilon_\ell \leq K_\ell \varepsilon_\ell < 1/2 \) (we use the fact that \(m \leq \ell \)). \(\blacksquare \)

We shall identify subquotients of \(X \) with subspaces of \(X \) (as linear spaces). More
precisely, suppose \(X'' \hookrightarrow X' \hookrightarrow X \). Then \(Y = X/X'' \) and \(Y' = X'/X'' \) are identified
with \(X \ominus X'' \) and \(X' \ominus X'' \), respectively.

Proposition 3.2. \(H \) is \((1 + \varepsilon)\)-completely complementably finitely representable in
any infinite dimensional subquotient of \(X \).
Proof. Fix an odd \(n \), and consider \(f_1, \ldots, f_{K_n} \in A_n \) such that \(f_1 < \ldots < f_{K_n} \). Denote by \(X_f \) the span of \(f_1, \ldots, f_{K_n} \) in \(X \). We shall show that \(X_f \) is completely contractively complemented in \(X \), and completely isometric to \(H_{K_n} \). Indeed, there exists \(W_0 \in W \) s.t. \(W_0 \xi = \sum_{j=1}^{K_n} \langle \xi, f_j \rangle \delta_j \) for \(\xi \in X \). By (3.1), \(\| W_0 \|_{cb} = 1 \).

Consider \(W_0^* \) as an operator \(V : H \to X \). Then

\[
\| V \|_{cb} = \max \left\{ \| V \|_{CB(H, \text{MIN}(\ell_2))}, \sup_{i \in \mathbb{N}} \| U_i V \|_{CB(H, E_i)}, \sup_{W \in W} \| WV \|_{CB(H)} \right\}.
\]

But \(\| V \|_{CB(H, \text{MIN}(\ell_2))} = \| V \| = 1, \| WV \|_{CB(H)} = \| WV \| \leq 1, \) and \(\| U_i V \|_{CB(H, E_i)} \leq \| U_i V \|_1 \leq 1 \) by Lemma 3.1. Thus, both \(W_0 \) and \(V \) are complete contractions, hence \(X_f \) is completely isometric to \(H_{K_n} \). Moreover, \(P = VW_0 \) is a completely contractive projection onto \(X_f \).

Now consider \(Y' = X'/X'' \) (with \(X'' \hookrightarrow X' \hookrightarrow X \)). By perturbing \(X' \) and \(X'' \) slightly, and identifying \(Y' \) with a subspace of \(X \) (as explained above), we can assume that \(Y' \cap A_n \) contains \(f_1 < \ldots < f_{K_n} \). Denote by \(Z \) the span of \(f_1, \ldots, f_{K_n} \) in \(Y' \). We claim that \(Z \) is completely isometric to \(H_{K_n} \), and completely contractively complemented in \(Y' \). Indeed, consider the orthogonal projection \(P \) from \(X \) onto \(Z \).

Above we have established that \(P \) is completely contractive as an operator on \(X \). Therefore, for any \(z \in K \otimes Z \),

\[
\| z \|_{K \otimes X'} \geq \inf \{ \| (I_K \otimes P)(z + x) \|_{K \otimes X'}, \| x \in K \otimes X'' \} = \| z \|_{K \otimes X'},
\]

since \(X'' \subset P \). Thus, \(Z \) is completely isometric to the span of \(f_1, f_2, \ldots, f_{K_n} \) in \(X' \), which, by the above, is completely isometric to \(H_{K_n} \). Moreover, \(P \) (viewed as an operator on \(Y' \)) is completely contractive.

The following result yields a useful lower estimate for c.b. norms of operators on \(X \) and its subquotients.

Proposition 3.3. Suppose \(X'' \hookrightarrow X' \hookrightarrow X \), and let \(Y \) and \(Y' \) are the quotient spaces \(X/X'' \) and \(X'/X'' \), respectively.

(a) Consider the operators \(T : Y' \to Y, U : Y \to \ell_2^{10^n}, \) and \(V : \ell_2^{10^n} \to Y' \), such that \(U, V^* \in U \). Then

\[
\| T \|_{cb} \geq \frac{\| UTV \|_1}{5 \max\{10^n, \| UV \|_1\}}.
\]

Consequently, \(\| T \|_{cb} \geq \| UTV \|_1/(5 \cdot 10^n) \) whenever \(U \) and \(V \) as above satisfy \(UV = 0 \).

(b) Suppose \(H \) has property \((P) \), and consider the operators \(T : Y' \to Y, U : Y \to \ell_2^{10^n}, \) and \(V : \ell_2^{10^n} \to Y' \), such that \(U \in U \). Then

\[
\| T \|_{cb} \geq \frac{\| UTV \|_1}{5 \max\{10^n \| V \|, \gamma_n \| V \|, \| UV \|_1\}}.
\]

For the proof, we need the following two lemmas. Below, \(X'', X', X'', Y', \) and \(Y \) are as in the statement of Proposition 3.3.
Lemma 3.4. Suppose P is the orthogonal projection from X onto Y', and $U_i : X \to E_i$ is as in the definition of X. Then $\|U_i|_{Y'}\|_{CB(Y',E_i)} \leq 1 + 2\|U_i - U_iP\|_1$.

Proof. Observe first that
\[
\|U_iP\|_{CB(X,E_i)} \leq 1 + \|U_i - U_iP\|_{CB(X,E_i)} \leq 1 + \|U_i - U_iP\|_1.
\]
Moreover, $\|U_iP\|_{CB(X,E_i)} \geq \|U_iP\|_{Y'}\|_{CB(Y',E_i)}$. Indeed, suppose $y \in M_n \otimes Y'$ satisfies $\|y\|_{M_n \otimes Y'} < 1$. Then there exists $x \in M_n \otimes X$ such that $\|x\|_{M_n \otimes X} < 1$, and $I_{M_n} \otimes P(x) = y$. We conclude that
\[
\|I_{M_n} \otimes U_iP(y)\|_{M_n \otimes E_i} = \|I_{M_n} \otimes U_iP(x)\|_{M_n \otimes E_i} < \|U_iP\|_{CB(X,E_i)}.
\]
To finish the proof, note that $\|U_i|_{Y'}\|_{CB(Y',E_i)} \leq \|U_iP\|_{Y'}\|_{CB(Y',E_i)} + \|U_i - U_iP\|_1$. □

Lemma 3.5. Suppose V as an operator from $E_i^* \to Y'$. Then
\[
\|V\|_{CB(E_i^*,Y')} \leq \max \left\{ \|U_iV\|_1, \|V\|_2, \sup_{W \in W} \|WV\|_{cb} \right\}.
\]
Consequently:

1. If $V^* \in \mathcal{U}$, then $\|V\|_{CB(E_i^*,Y')} \leq \max \{\|U_iV\|_1, \|V\|_2\}$.

2. If H has property (P) and $n_i = 100^k$, then
\[
\|V\|_{CB(E_i^*,Y')} \leq \max \left\{ \|U_iV\|_1, \max\{\sqrt{n_i}; \gamma_k\}\|V\| \right\}.
\]

Proof. Let $q : X' \to Y'$ is the complete quotient map. By (3.1),
\[
\|V\|_{CB(E_i^*,Y')} = \|qV\|_{CB(E_i^*,Y')} \leq \|V\|_{CB(E_i^*,X)} = \max \left\{ \|V\|_{CB(E_i^*,\text{MIN}(\ell_2))}, \sup_{j \in \mathbb{N}} \|U_jV\|_{CB(E_i^*,E_j)}, \sup_{W \in W} \|WV\|_{CB(E_i^*,H)} \right\}.
\]
However, $\|V\|_{CB(E_i^*,\text{MIN}(\ell_2))} = \|V\|$, $\|U_iV\|_{cb} = \|U_iV\|_1$, while $\|U_jV\|_{cb} = \|U_jV\|_2 \leq \|V\|_2$ for $j \neq i$. If $V^* \in \mathcal{U}$, then, by Lemma 3.1, $\|WV\|_{cb} \leq \|WV\|_1 \leq 1$. If H has property (P) and $n_i = 100^k$, then $\|WV\|_{cb} \leq \gamma_k\|V\|$.

Proof of Proposition 3.3. We observe that, for any $i \in \mathbb{N}$,
\[
\|T\|_{cb} \geq \frac{\|U_iTV\|_{CB(E_i^*,E_i)}}{\|U_i|_{CB(Y,E)}\|V\|_{CB(E_i^*,Y')}} \geq \frac{\|U_iTV\|_1}{5\|U_i|_{CB(Y,E)}\|V\|_{CB(E_i^*,Y')}}.
\]
Approximating U with operators U_i, and using estimates for $\|U_i\|_{cb}$ and $\|V\|_{cb}$ obtained in Lemmas 3.4 and 3.5, we achieve the result. □

Corollary 3.6. Any infinite dimensional subquotient of X is completely indecomposable.

Proof. Suppose P is a projection on $Y' = X'/X''$ (here, $X'' \hookrightarrow X' \hookrightarrow X$), and both the range and the kernel of P are infinite dimensional. The sets A_n involved in the construction of X are asymptotic, and therefore, by a small perturbation
argument, we can assume that for any even \(n \) there exist \(f_1, \ldots, f_{2K_n} \in A_n \cap Y' \) s.t. \(f_1 < \ldots < f_{2K_n} \), and

\[
Pf_j = \begin{cases} f_j & j \leq K_n \\ 0 & j > K_n \end{cases}.
\]

Consider the operators \(U, V \in B(X, \ell_2^{K_n}) \), defined by

\[
U\xi = \frac{1}{\sqrt{2}} \sum_{s=1}^{K_n} \langle \eta, f_{s+K_n} - f_s \rangle \delta_s, \quad V\xi = \frac{1}{\sqrt{2}} \sum_{s=1}^{K_n} \langle \eta, f_{s+K_n} + f_s \rangle \delta_s \quad (\xi \in \ell_2).
\]

Then \(U, V \in \mathcal{U} \), and \(UV^* = 0 \). Therefore, by Proposition 3.3,

\[
\|P\|_{cb} \geq \frac{\|UPV^*\|_1}{5 \cdot 10^{n/2}} = \frac{10^n/2}{5 \cdot 10^{n/2}} = 10^{n/2-1}.
\]

The even integer \(n \) can be arbitrarily large, hence \(P \) is not completely bounded. \(\blacksquare \)

4. Subquotients of \(X \) Fail the OAP

As in the previous section, we assume that \(X'' \hookrightarrow X' \hookrightarrow X \), and \(Y' = X'/X'' \) is infinite dimensional. We establish

Theorem 4.1. \(Y' \) fails the Compact Operator Approximation Property.

Our main tool is

Lemma 4.2. Suppose \(Z \) is an operator space with the Compact Operator Approximation Property, \((Z_i)_{i=0}^\infty \) a sequence of finite dimensional subspaces of \(Z \), \((F_i)_{i=1}^\infty \) a sequence of 1-exact operator spaces, and the function \(f : \mathbb{N} \to (2, \infty) \) is such that \(\lim_{n \to \infty} f(n) = \infty \). Then there exists a compact operator \(\psi : Z \to Z \) such that \(\psi|_{Z_0} = I_{Z_0} \), and \(\|u_i\psi|_{Z_i}\|_{cb} \leq f(i\|u_i\|_{cb}) \) for any \(i \in \mathbb{N} \) and \(u_i : Z \to F_i \).

We omit the proof, as it is identical to the proof of Lemma 6.1 of [OR].

Proof of Theorem 4.1. By a small perturbation argument, we may assume that \(Y' \) contains vectors \(f_{ij} \) \((j \in \mathbb{N}, 1 \leq i \leq K_{2j})\) with finite support such that \(f_{ij} \in A_{2j} \), and \(f_{ij} < f_{ik} \) if \(j < \ell \), or \(j = \ell \) and \(i < k \). For every \(j \in \mathbb{N} \), \(1 \leq m \leq 100 \), and \(\varepsilon = \pm 1 \), define operators \(A_{j,m,\varepsilon} : Y' \to \ell_2^{K_{2j}} \) and \(B_{j,m,\varepsilon} : \ell_2^{K_{2j}} \to Y' \) by setting \(m' = K_{2j}(m - 1) \),

\[
B_{j,m,\varepsilon} \delta_{ij} = \frac{1}{\sqrt{2}} (f_{ij} - \varepsilon f_{m'i+j+1,j+1}) \quad \text{for} \ 1 \leq i \leq 100^j
\]

\((\delta_{ij})_{i=1}^{K_{2j}}\) is the canonical basis of \(\ell_2^{K_{2j}} \), and

\[
A_{j,m,\varepsilon} \xi = \frac{1}{\sqrt{2}} \sum_{i=1}^{100^j} \langle \xi, f_{ij} + \varepsilon f_{m'i+j+1,j+1} \rangle \delta_i \quad \text{for} \ \xi \in Y'.
\]

We can assume that, for every triple \((j, m, \varepsilon)\) as above, there exists \(s = s(j, m, \varepsilon) \in \mathbb{N} \) for which \(\dim E_s = K_{2j} \), and \(U_s = A_{j,m,\varepsilon} \) (here, we identify \(E_s \) with \(\ell_2^{K_{2j}} \)).
Suppose, for the sake of contradiction, that Y' has the COAP. By Lemma 4.2, there exists a compact operator $\psi : Y' \to Y'$ such that $\psi f_{i,3} = f_{i,3}$ for $1 \leq i \leq 100^3$, and

$$\|A_{j,m,\varepsilon}\|_{cb} \leq j\|A_{j,m,\varepsilon}\|_{cb} \|B_{j,m,\varepsilon}\|_{cb} \text{ for } j \geq 3, \ 1 \leq m \leq 100, \ \varepsilon = \pm 1,$$

with $A_{j,m,\varepsilon}$ and $B_{j,m,\varepsilon}$ viewed as elements of $CB(Y', E_{s(j,m,\varepsilon)})$ and $CB(E_{s(j,m,\varepsilon)}^*, Y')$, respectively. However, $\|A_{j,m,\varepsilon}\|_{cb} \leq 1$, and $\|B_{j,m,\varepsilon}\|_{cb} \leq \sqrt{K_2} = 10^j$ (by Lemma 3.4 and Lemma 3.5, respectively). Thus, we have

$$\|A_{j,m,\varepsilon}\|_{CB(E_{s(j,m,\varepsilon)}^*, E_{s(j,m,\varepsilon)})} \leq j \cdot 10^j$$

for any appropriate triple (j, m, ε). By the basic properties of spaces E_i, we have

$$\text{Re} \left(\text{tr} (A_{j,m,\varepsilon} \psi B_{j,m,\varepsilon}) \right) \leq \|A_{j,m,\varepsilon}\|_{cb} \|B_{j,m,\varepsilon}\|_{cb} \leq 5j \cdot 10^j.$$

An easy computation shows that

$$\text{tr} (A_{j,m,\varepsilon} \psi B_{j,m,\varepsilon}) = \frac{1}{2} \sum_{i=1}^{K_{2j}} (\psi(f_{ij} - \varepsilon f_m + f_{ij} + \varepsilon f_m)),$$

Therefore,

$$\text{Re} \left(\text{tr} (A_{j,m,1} \psi B_{j,m,1} + A_{j,m,-1} \psi B_{j,m,-1}) \right) = \text{Re} \left(\sum_{i=1}^{K_{2j}} (\langle \psi(f_{ij}), f_{ij} \rangle - \langle \psi(f_{m} + f_{ij}), f_{m} \rangle) \right) \leq 10^{j+1}.$$

Consequently,

$$\text{Re} \left(\sum_{i=1}^{K_{2j}} \langle \psi(f_{m} + f_{ij}), f_{m} \rangle \right) \geq \text{Re} \left(\sum_{i=1}^{K_{2j}} \langle \psi(f_{ij}), f_{ij} \rangle \right) - 2 \cdot 10^{j+1}.$$

Summing over all values of m ($1 \leq m \leq 100$), we obtain

$$(4.1) \quad S_{j+1} \geq 100(S_j - 2 \cdot 10^{j+1}),$$

where $S_j = \text{Re} \sum_{i=1}^{100^3} \langle \psi(f_{ij}), f_{ij} \rangle$. This allows us to show by induction that

$$(4.2) \quad S_j > \frac{j + 1}{2j} 100^j > \frac{100^j}{2}$$

whenever $j \geq 3$. Indeed, $\psi(f_{i,3}) = f_{i,3}$ for $1 \leq i \leq 100^3$, hence $S_3 = 100^3$. Assuming (4.2) holds for some $j \geq 3$, observe that

$$\frac{2 \cdot 10^{j+1}}{S_j} < 10^{2-j} \frac{j + 2}{j + 2},$$

hence, by (4.1),

$$S_{j+1} \geq 100S_j \left(1 - \frac{2 \cdot 10^{j+1}}{S_j} \right) > \frac{j + 1}{2j} 100^j \left(1 - \frac{1}{j + 2} \right) = \frac{j + 1}{2(j + 1)} 100^j.$$

This proves (4.2) for $j + 1$.

On the other hand, ψ is compact, hence $\max_{1 \leq i \leq K_2} \|\psi(f_{ij})\| < 1/2$ when j is sufficiently large. For such j, $S_j < 100^j/2$. This contradicts (4.2).

As a corollary, we prove:

Corollary 4.3. In the above notation, the spaces Y' and Y'' are not exact.

For the proof, we need the following proposition (it may be known to specialists).

Lemma 4.4. Suppose Z is an infinite-dimensional λ-exact operator space. Then Z contains a C-completely basic sequence for any $C > \lambda$.

Proof. We select a C-completely basic sequence $(z_i) \subset Z$ inductively. More precisely, we select linearly independent vectors $z_1, z_2, \ldots \in Z$, finite codimensional subspaces $\ldots \hookrightarrow Z_2 \hookrightarrow Z_1 \hookrightarrow Z$, and finite rank projections $P_n \in CB(Z_n)$ such that, for any n, $z_1, \ldots, z_n \in Z_n$, ran $P_n = \text{span}[z_1, \ldots, z_n]$, $\|P_n\|_{\text{cb}} < C$, and $P_n z_n = 0$ whenever $m < n$ (then the operators $P_n|_{\text{span}[z_k]|_{k \in N}}$ play the role of basis projections).

First pick an arbitrary non-zero $z_1 \in Z$. By Hahn-Banach Theorem, there exists a contractive projection P_1 onto $E_1 = \text{span}[z_1]$. Moreover, P_1 has rank 1, hence it is completely contractive. Let $Z_1 = Z$.

Now suppose we have selected z_1, \ldots, z_n, Z_1, \ldots, Z_n, and P_1, \ldots, P_n, as above. Pick an arbitrary non-zero $z_{n+1} \in Z_n \cap (\cap_{m=1}^n \text{ker } P_m)$. Let $E = \text{span}[z_1, \ldots, z_{n+1}]$. Find $F \hookrightarrow M_N$ and $u : E \to F$ s.t. $\|u\|_{\text{cb}} = 1$, $\|u^{-1}\|_{\text{cb}} < C$. By Arveson-Wittstock-Stinespring-Paulsen extension theorem, there exists $\tilde{u} : Z_n \to M_N$ s.t. $\tilde{u}|_E = u$, and $\|\tilde{u}\|_{\text{cb}} = 1$. Let $Z_{n+1} = \text{span}[E, \text{ker } \tilde{u}] \hookrightarrow Z_n$, and note that dim $Z_n/\text{ker } \tilde{u} \leq \dim M_N < \infty$, hence dim $Z_n/Z_{n+1} < \infty$. Furthermore, $\tilde{u}(Z_{n+1}) \subset F$. It is easy to see that $P_{n+1} = u^{-1}\tilde{u}|_{Z_{n+1}}$ is a projection from Z_{n+1} onto $\text{span}[z_1, \ldots, z_{n+1}]$, with $\|P_{n+1}\|_{\text{cb}} < C$. Moreover, $P_m z_{n+1} = 0$ for $m \leq n$.

5. Completely bounded maps on subquotients of X

In this section, we assume that H has property (P), $X'' \hookrightarrow X' \hookrightarrow X$, $Y = X/X''$, and $Y' = X'/X''$ is infinite dimensional. We denote by J_Y, the natural embedding of Y' into Y. We show:

Theorem 5.1. Any completely bounded operator $S : Y' \to Y$ is of the form $S = cJ_Y + S'$, where $c \in C$ and S' is compact.

For the proof, we need the following proposition (it may be known to specialists).
Proposition 5.2. Suppose Z' is a subspace of a Hilbert space Z, and $T \in B(Z', Z)$. Then either T is a compact perturbation of a scalar multiple of J (the natural embedding of Z' into Z), or there exist mutually orthogonal projections of infinite rank $P \in B(Z')$, $Q \in B(Z)$ such that $QT|_{\text{ran} P} \in B(\text{ran} P, \text{ran} Q)$ is invertible.

Proof. First denote by Q_0 the orthogonal projection in $B(Z)$ whose kernel equals Z'. If there are no infinite rank projections P and Q s.t. $\text{ran} Q \subset \text{ran} Q_0$ and $QT|_{\text{ran} P}$ is invertible, then $Q_0 T$ is compact. This reduces the problem to the case of $Z' = Z$.

We denote by $\mathcal{K}(H)$ the space of compact operators on H. We shall show that, if $c = \text{dist}(T, CI_Z + \mathcal{K}(Z)) > 0$, then there exist mutually orthogonal projections P and Q of infinite rank s.t. $QT|_{\text{ran} P} \in B(\text{ran} P, \text{ran} Q)$ is invertible.

Note that $\text{dist}(RTR, CR + \mathcal{K}(ran R)) = c$ for any orthogonal projection $R \in B(Z)$ with finite dimensional kernel. By Theorem 9.12 of [D], for such an R there exist mutually orthogonal norm 1 vectors $\xi(R), \eta(R) \in \text{ran} R$ s.t. $\langle T\xi(R), \eta(R) \rangle > c/3$. This allows us to construct inductively vectors $(\xi_n)_{n \in \mathbb{N}}$ and $(\eta_n)_{n \in \mathbb{N}}$ in Z, such that, for any k, j,

$$\langle \xi_k, \eta_j \rangle = 0, \quad \langle \xi_k, \xi_j \rangle = \langle \eta_k, \eta_j \rangle = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}, \quad \langle T\xi_k, \eta_j \rangle \begin{cases} > c/3 & k = j \\ = 0 & k \neq j \end{cases}.$$

Indeed, let $R_1 = I_Z$, $\xi_1 = \xi(R_1)$, and $\eta_1 = \eta(R_1)$. Suppose $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n$ have already been selected in such a way that (5.1) holds whenever $j, k \leq n$. Let R_{n+1} be the orthogonal projection whose kernel is spanned by $(\xi_i)_{i=1}^n$, $(\eta_i)_{i=1}^n$, $(T\xi_i)_{i=1}^n$, and $(T^*\eta_i)_{i=1}^n$. Let $\xi_{n+1} = \xi(R_{n+1})$, $\eta_{n+1} = \eta(R_{n+1})$, and observe that now (5.1) holds for all $j, k \leq n + 1$.

Denote by Q and P the orthogonal projections from Z onto $\text{span}[\eta_n \mid n \in \mathbb{N}]$ and $\text{span}[\xi_n \mid n \in \mathbb{N}]$, respectively. By the above, $QT|_{\text{ran} P}$ is invertible.

Proof of Theorem 5.1. Suppose $T : Y' \rightarrow Y$ is not a compact perturbation of $J_{Y'}$. We shall show T is not completely bounded. By Proposition 5.2, there exist mutually orthogonal projections P and Q of infinite rank s.t. $\|QT\xi\| \geq \|\xi\|/C$ for any $\xi \in \text{ran} P$ ($C > 0$). By a small perturbation argument, assume the existence of $f_1 < \ldots < f_{K_n}$ in $\text{ran} Q \cap A_n$ (n even). Consider $U \in \mathcal{U}$ which sends f_j into δ_j ($1 \leq j \leq K_n$), and annihilates $\text{span}[f_1, \ldots, f_{K_n}]^\perp$. Define $V : \ell_2^{K_n} \rightarrow \text{ran} P \rightarrow Y'$ by setting $V\delta_j = (QT)^{-1}f_j$ (once again, $1 \leq j \leq K_n$). Then $\|V\| \leq C$, $UV = 0$, and UTV is the identity on $\ell_2^{K_n}$. Applying Lemma 3.3, we conclude that

$$\|T\|_{cb} \geq \frac{100^n}{5C \max\{\gamma_n, 10^n\}}.$$

n can be chosen to be arbitrarily large, hence T is not completely bounded.

References