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Abstract

We derive a Riemann{Hilbert problem satis ed by the Baker-A khiezer function for the nite-gap
solutions of the Korteweg-de Vries (KdV) equation. As usual for Riemann-Hilbert problems associated
with solutions of integrable equations, this formulation ha s the bene t that the space and time dependence
appears in an explicit, linear and computable way. We make use of recent advances in the numerical
solution of Riemann{Hilbert problems to produce an e cient and uniformly accurate numerical method
for computing all periodic and quasi-periodic nite-genus s olutions of the KdV equation.

1 Introduction

The goal of this paper is to nd a new description for the so-cdled nite-genus or nite-gap solutions of the
Korteweg-de Vries (KdV) equation

U +6UUx + Uk =0; (X;1)2 R R; (1.1)

and to use this description to compute them.

The nite-genus solutions arise in the spectral analysis ofthe Schredinger operator with periodic or
guasi-periodic potential, where the spectrum has only a nte number g of nite-length bands separated by
g gaps. They are explicitly described in terms of Riemann the& functions, parameterized by hyperelliptic
compact Riemann surfaces of genug. In the context of the periodic problem for (1.1), these soltions play
the same role that is played by trigopnometric polynomials fa the linear KdV equation u; + uyy =0 of (1.1):
the general solution to the periodic problem in the space of guare-integrable functions is approximated
arbitrarily close by a nite-genus solution with su cientl y high g. An eloquent overview of the extensive
literature on these solutions is found in McKean's review [#] of [15]. Of particular importance in the
development of this literature are the pioneering works of lax [13] and Novikov [18]. Excellent reviews are
also found in Chapter 2 of [17], Dubrovin's oft-cited reviewarticle [9], and [2], parts of which focus speci cally
on the computation of these solutions.

The computation of the nite-genus solutions is a nontrivial matter. Although Lax's original paper [13]
includes an appendix by Hyman, where solutions of genus 2 werobtained through a variational principle,
the now-standard approach of their computation goes throudp their algebro-geometric description in terms
of Riemann surfaces, see [4] or [12], for instance. Anothempproach is through the numerical solution of
the so-called Dubrovin equations, a set of coupled ordinargi erential equations that describe the dynamics
of the zeros and poles of an auxiliary eigenfunction of the sgctral problem, the Baker-Akhiezer function
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[2, 8]. The nite-genus solution is easily recovered from tle solution of the Dubrovin equations [17, 22]. One
advantage of all these approaches over the variational methd employed by Lax and Hyman is that periodic
and quasi-periodic solutions are constructed with equal ese. The same is true for our approach, described
below.

The essence of this paper is the derivation of a Riemann{Hilbrt representation of the Baker{Akhiezer
function. We construct a Riemann{Hilbert problem (RHP) who se solution is used to nd the Baker{Akhiezer
function. From this, one extracts the associated solution 6 the KdV equation. The x- and t-dependence of
the solution appear in an explicit way, so that no time or spa® stepping is required to obtain the value of
the solution at a speci ¢ x and t. This should be contrasted with, for instance, the numericé solution of the
Dubrovin equations [22]. Furthermore, just like for the method of inverse scattering [24], the in nite-line
counterpart of the problem under investigation, this deperdence of the KdV solution on its independent
variables appears linearly in an exponential function in the RHP.

In order to solve this RHP, we employ a regularization procedre using ag-function [7]. This simpli es
the x and t dependence further. The resulting RHP has piecewise congtajumps. Straightforward modi-
cations allow the RHP to be numerically solved e ciently us ing the techniques in [20]. This results in an
approximation of the Baker{Akhiezer function that is unifo rmly valid on its associated Riemann surface.
This, in turn, produces a uniform approximation of the assogated solution of the KdV equation in the entire
(x;t) plane.

In this paper, we begin by introducing the required fundamernals from the theory of Riemann surfaces.
Next we use the methods of Chapter 2 of [17] to describe how hgpelliptic Riemann surfaces are used to
solve the KdV equation for a restricted class of initial condtions. The representation of the Baker{Akhiezer
function in terms of a RHP is derived in the next section. The nmodi cation of this RHP is discussed in the
two subsequent sections. The nal form of the RHP is presentd in Section 6. In the nal section the RHP
is solved numerically and the numerical convergence of the athod is veried. The method is illustrated
there with many numerical examples.

It is unlikely that this new computational approach to the n ite-genus solutions of the KdV equation is
competitive in terms of speed, with the classical approach i Riemann theta functions and Riemann surfaces
cited above. Nevertheless, the explicit description of thee solutions in terms of a RHP and its numerical
solution may lead to other interesting developments. Furthermore, through the results of [21], the accuracy
of the numerical results is guaranteed for all ranges of the grameters.

2 Riemann surfaces

We use this section to introduce the fundamental ideas from he theory of Riemann surfaces that are needed
below. Most of these fundamental facts can be found in [2, 8].The un nished lecture notes by B. A.
Dubrovin [10] provide an especially readable introductionand most results stated below can also be found
there.

De nition 2.1. Let
F(; )= 2 Pagsa()iorF()= 2 Pagu():

The algebraic curve associated with this function is the sotion set in C? of the equationF(;w) = 0.

The desingularization and compacti cation of this curve is a Riemann surface, . For this restricted class
of polynomials the associated Riemann surface is said to be hyperelliptic. We only consider hyperelliptic
surfaces.

De ne the a cyclesf g gjgzl and the b cyclesfh gjgz1 on the Riemann surface as in Figure 1. The set
fa [ Qngzl is a basis for the homology of the Riemann surface. It is well kown that the hyperelliptic
surfaces in De nition 2.1 are of genusg; they can be identi ed with a sphere with g handles. It is also well
known that a genus g surface hasg linearly independent holomorphic di erentials, denoted ! (;:::! 4. We

choose the normalization
[

'v=21i jk; jk=1;:1550:

aj



The matrix

B:(Bjk)l ik g; Bjk: b!k;
/

is known as a Riemann matrix. Although this matrix has import ant properties and is necessary for computing
the theta function representation of the nite-genus solutions we do not need it directly.

Figure 1: A cartoon of a hyperelliptic Riemann surfaces witha choice for thea and b cycles.

Lemma 2.1 ([9]). Let! be a holomorphic di erential on a Riemann surfaces of genug. If
I

'=0;j=1;::150;

aj
then! =0.

Lemma 2.2 ([9]). Every holomorphic dierential f on a genusg hyperelliptic Riemann surface 2
P2g+1 () =0 can be expressed locally as

f:@d;

where q is a polynomial of degree at mosg 1.

A divisor is a formal sum

Xk
D= nQ; nj 22z

j=1
of points Q; on the Riemann surface. Given a meromorphic functiorf on the Riemann surface with poles
at Q; of multiplicity n; and zeros atR; with multiplicity m; we de ne the associated divisor

X X

(f ) = mj Rj ﬂj Qj .
i=1 i=1

The degree of a divisor

X Xk X
degD = n; so that deg(f) = n; m;:
j=1 j=1 j=1

A divisor is said to be positive if eachn; is positive andD > D %holds if D D%is positive. We usel(D) to
denote the dimension of the space of meromorphic functions such that (f) D.

Lemma 2.3 (Riemann inequality [9]). For a genusg surface, if degD g then

(D) 1+degD g:



A divisor D is said to be nonspecial if the Riemann inequality is an equéty. De ne the Abel mapping
for points on the Riemann surface by

R R i
AQ= G Sla 2.1)
where the path of integration is taken to be the same for all inegrals. NoteF;hat this is well-de ned for the
appropriately normalized di erentials. We extend this map to divisors D = jk:l n; Q; by
X
AD)=  nmA(Q):

i=1

Theorem 2.1 ([9]). The Abel map A maps points on the symmetrized Riemann surface to the assated
Jacobi variety J() = C9=f2M + BN gfor M;N 2 Z9. Furthermore, if the divisor D = Q:+ + Qg is
nonspecial thenA has a single-valued inverse from the Jacobi variety to the symetrized Riemann surface
in a neighborhood ofA(D).

We do not make use of this theorem directly but include it for ompleteness. Next, we describe properties
of Abelian di erentials of the second kind that are needed béow

De nition 2.2.  Given a point Q on the Riemann surface and a positive integen, an Abelian di erential
of the second kind is a meromorphic di erential that has a simgle pole of ordern + 1, so that its local
representation is

6=z " '+0(1) dz
with respect to a local parameterz, z(Q) =0.

When Q is the point at in nity we construct these di erentials expl icitly. As a local parameter we take
z?> =1= sinceQ is a branch point. If n is even we set

1

51 — 5 n=2 ld:
When n is odd, there is more to be done. First, compute
j 7 2 3 .
Wd = 29756?3§dz
Then
\o
Pz )=2z% %1 2% gu) @ 2% ) 2z*):
j=1
Thus

0 1 1=
J 2 2429 @ 2 ¥ 2 2 YA
Wd = 2z (1 z° g+1) (1 z2 )@ z° ) dz
=1

=( 2z 3 2294+ O(1))dz:
We choosgj = g+(n 1)=2 so that

| 1 g+(n 1)=2
1= .

2 w

Let 7 be the dierential obtained from [ by adding holomorphic di erentials so that it has zero a cycles.
We state a lemma concerning theb-periods of these di erentials.

Lemma 2.4 ([10]). De ne y(z) through the equality! « = yx(z)dz and z2 = 1= . Then

|
n_ldnl

o b —HWW(Z)Z_ ;o k=100

=0



3 The nite-genus solutions of the KdV equation

We begin by considering the scattering problem associated ith the KdV equation. The time-independent
Schmedinger equation

XX UO(X) = ; (3-1)

is solved for eigenfunctions (x; ) bounded for all x. We de ne the Bloch spectrum
S(up) = 2 C: there exists a solution such that sug ( x; )j< 1
X2R

It is well known that for ug(x) smooth and periodic the Bloch spectrum consists of a countale collection of
real intervals

F
S(u)= [l
=1
i< j< j+1 < j41:
If there are only n + 1 intervals then .1 = 1 . We refer to the intervals [ ;; ;] as bands and the intervals
[j; j+]asgaps.

Assumption 3.1.  S(up) consists of a nite number of intervals. In this case we say tht up is a nite gap
potential.

De ne to be the hyperelliptic Riemann surface associated with the function

\o
F(; )= 2 P() P()=( g1) i) i)
j=1

§ee Figure 2 for a cartoon. We divide this surface into two shets. Choose the branch cuts for the function

0 P( ) along S(up). We x the branch by the requirement = P( ) ( 1)9%j j9*12as 11 . Dene
P( )+ to be the value lim, - = P( +i ). This allows us to de ne

P
=f(; P()): 2Cg

When considering a functionf de ned on we use the notation f so that f, (f ) denotes the function
restrictedto . ( ). Inthis way we can considerf as a function of only . We need an explicit description
of the a cycles since we take a computational approach below:

P—

p—+
a =1 P()): 2(i iwmlglf G P()): 20 im)a

The & component on . ( ) is oriented in the direction of decreasing(increasing) . This description is
also useful since we will consider poles and zeros lying onéla cycles.

Remark 3.1. There is some inconsistency in the notationf which is also present in the literature [10].
In what follows, it will be clear from context whether we are eferring to a function de ned on the Riemann
surface ortof, andf separately.

We introduce further notation that will be of use later. Give n a point Q = ( ;w ) 2 , we follow [11] and
de ne the involution by Q =(; w). Thisis an isomorphism from one sheet of the Riemann surfacto
the other. It is clear the rst sheet is isomorphic to the cut plane

8 9
<

[° =
C:Cn:[gﬂ_;l)[ [yl
i=1 ’

through the mapping”: +! €denedby @ = anditsinverse : €1 , denedby =(: P() ).



Figure 2: A cartoon of the Riemann surface associated with th nite gap potential ug.

Lemma 3.1. [17] For every Xo 2 R there exist two solutions  of (3.1) such that

(x; ) is meromorphic on nflg with g poles at

xo
D= Qi Q2a;
i=1
and g zeros at
xe
D°=  R;i; Ri2a:
i=1
Dene ;= R;thenf ;g satises
j(xo) 2 [ j; ,-+pl]; (3.2)
2 P(j)
0_ I .
= Q" (3.3)

kei (i )

(x; )=¢e i x )1+ O( ¥))as !1

For simplicity we take xo = O below. We will always take the branch cut for =2 to be along [Q1 )

and x the branch by 72 ij j'™2as ! 1 . If the potential ug(x) is taken as an initial condition for
the KdV equation then these zeros have both time and space degmdence ; = (x;t). This dependence is
given by [8]
. P ——
8i( 4+ Up=2) P(;
L= (Q 0=2) (J); (3.4)
kei (i K
and the solution to the KdV equation can be reconstructed through
xo X
ux;ty= 2 )+ gt (jF )
j=1 j=1

The (now time-dependent) function (x;t; ) is known as a Baker{Akhiezer (BA) function. From the
general theory of Baker{Akhiezer functions [17] it is knownthat it is uniquely determined by a nonspecial
divisor

for the poles and the asymptotic behavior [17]. The followiry lemma shows that all divisors we consider are
nonspecial.



P
Lemma 3.2. On the hyperelliptic surface 2 = P( ) the divisor D = ig:l Ri, whereR; 2 a; is nonspecial.

Proof.  Assumef is meromorphic with D (f). The dierential w = & has double poles with zero
residues at the pointsR;. We have the following representation

Here y; are Abelian di erentials of the second kind normalized so tlat they have zero periods along tha
cycles and second-order poles at the point®;. Since f is single valued on the Riemann surface
I I

w=0; w=0; k=1;:::;0:

ak bk

Since thea periods vanish we conclude that has zeroa periods and must be zero. From thé period condition
we obtain
' X
w= G (7(0)=0; (3.5)
by =1

wherez; is a local parameter nearR; = z;(0) and ; is determined from the equality! x = ; (zj)dz near
R;. We know that!  can be expressed uniquely as the sum of di erentials of the rim

11
u=——-d; forl=1;:::;0;
with coe cients dg. If R; =(z; P P(z)) is not a branch point we obtain
I 1

x9 z
kij (Zj) = dkj [Sa———N

If it is a branch point R; = (z;0) we use the local parametes = P z; so that

) x d 27 *
ki (Z)= K P—=—=—"
I=1 PAz)
Since the matrix dy is invertible the condition (3.5) is reduced to the study of the matrix
Zy=z7 %

after multiplying rows by suitable constants. This is a Vanérmonde matrix, and thus invertible. This shows
that ¢; =0 and thusw=0 andf = C 2 C. This proves the result.

Remark 3.2. We have shown that the Abel map is invertible from the Jacobiaviety to the symmeterized
Riemann surface in a neighborhood ofA(D) for every divisor we consider.

Being precise, we obtain the following unique characterizion of the function (x;t; ) [17]:

De nition 3.1. The BA function for the solution of the KdV with initial condi tion ug(x) is the unique
function that satis es

solves(3.1).
is meromorphic on nflg with poles at

X9
D= Q: Q2a; Q= i0;0): (3.6)

i=1



1=2

(xt )=e x4 N1+ O F2)as 11
_ g . Py
Uo(X)= 2 j=1 i 0)+ ge j=1( Pitog)

Remark 3.3. Instead of computing the zeros of the BA function we derive a iBmann{Hilbert formulation

of the BA function to compute the function itself. The main bae t of this approach is that the roles ofx and

t in the problem are reduced to that of parameters. This givesraapproximation to the solution of the KdV
equation that is uniformly convergent in the(x;t) plane. In this sense our method is comparable to the theta
function approach which can also achieve uniform convergee [12]. On the other hand, no time stepping is
required, as for the direct numerical solution of the PDE or the numerical solution of 3.2 and 3.4.

In what follows we assume without loss of generality that ; =0. If ; 60wedene = 1 and
consider a modi ed scattering problem

XX UO(X) = ( + 1) ; (3-7)

xw  to(X) = ; to(X) = Uo(X)+ 1 (3.8)

Let u(x;t) and t(x;t) be the solutions of the KdV equation with ug(x) and trp(x) respectively, as initial
conditions. If u(x;t) satis es the KdV equation then so doesufx 6ct;t) + c. Therefore, by uniqueness,
u(x;t) =a(x +6 1t;t) 1

4 From a Riemann surface of genus g to the cut plane

Consider the hyperelliptic Riemann surface from Section 3 We represent a functionf denedon by a
vector-valued function f on € by

f()y= f.0) £))

Assume the functionf is continuous on all of . Let 2 ( ;; ;) and de ne
lim, o =lim , o+ ( ) . From the continuity of f

lim £ )= lim £ ( ))

i . It follows that

Letf ()=lim , ¢+ f( i ). Then

N 01
()=t () ;1§
We form a planar representation of the BA function

()= f.0) £))

The function satis es

g
é: 2 (nss )0 Cgsg)s

j=1

|
(xt; )= ¢ 172y 44 372 el 12y 4j 372 (1 + O l=2)):

Tt )= (gt )

The next step is to remove the oscillatory nature of for large . This procedure will a ect the jumps, thus
some care is in order. De ne

e ((xt )=2 0
R(X;t; ): 0 e(x;t; )=2 ;

(x;t; )=2ix 2 +8it 32



The function (x;t; )= ( x;t; )R(x;t; ) satises

[g
Tt )= (k) (1) é 2+ )L 0 s )
j=1
(xt ) [¢ 4.1
ot )= et ) © 0 e(x?H ;2 _(j; i+1); “.1)

j=1
(xt )= 1 1 (1+0( ")

This is a RHP for ~ when the poles at ; (0; 0) coincide with ; or ;. The boundary values of the solution
to the RHP should be at least locally integrable [11]. A pole &4 a band end ( j or ;) corresponds to a
square-root singularity. In general, we have poles in the itervals ( j; j+1) where there are smooth jumps.
In Section 5.1 we treat the case where;(0;0) = ;,j =1;:::;9 while enforcing that remains bounded
at f jgjg:1 . No such enforcement is made af | gjg=1 . The general case of poles on tha cycles is treated in
Section 5.2.

5 Regularization

We show how the jump conditions in (4.1) can be reduced to pieewise constant jumps. As mentioned above,
we rst perform the calculations in the simpler case when thepoles are located at (;;0) on . In the general
case, we use an additional BA function as a parametrix to movehe poles to the band ends thus reducing
the problem to the rst case.

5.1 All poles at the band ends

We assume ; (0;0) = ;. De ne the g-function

pﬁxg S (x;ts)+i j(x;t) ds

20 SO

Gx;t; )= ; (5.1)

where (x;t) is constant in  and will be determined below.
Lemma 5.1. The g-function satis es
G *(x;t; )+ G (x;t; )=0for 2( j; j),
G'(xt; ) G (xt )= (st )+i j0t)for 2(; j+),
G(x;t; ):p P()= P bome(x;t) K+ 0O( 9 Yas !l where
xw Z . (X;tLSE,Lj(X:t)Sk Lgs:
j=1 P(s)

1
mg(x;t) = 7

Proof: The rst two properties follow from the branching properties of P P( ) and properties of Cauchy
integrals. The last property follows from expandingl=(s ) in a Neumann series for large .

De ne the matrix function

el (xt ) 0
G(xt, )= 0 eS(xt ) ;

and consider the function

(xt )= (xt )Gt ):



Using Lemma 5.1 we compute the jumps of :

[Q

Txto)= (it ) 2 é 20 g )L (g ) (5.2)
i=1

. g 10t [0

ot )= s ) Tl o 82 (e 53)

Sincep P()= 0O( j9"17?), G has growth in at 1 unlessmy(x;t) =0 for k = 1;:::;9. We wish to
determine f jg’.; sothat has the same asymptotic behavior as as !1 , see 4.1. Thus, we must
solve the following problem which we put in slightly more abdract terms since we make use of it again below.

Problem 5.1 (The Moment Problem). Given continuous functions
fFC): 0 j=]! C j=1;11050;

we seek constants ; satisfying the moment conditions
z

0= yéif'( RSNy ;=100

,. POY

Theorem 5.1. The Moment Problem has a unique solution. Further, if eachf; takes purely imaginary
values then each ; is real valued.

Proof: The second claim follows from the fact thatp P( )+ takes purely imaginary values in the gaps,

[ j; j+1]. To establish the rst claim, notice that the Moment Problem is equivalent to the linear system
M =V,
Z j+l k 1
j P( )Z
Xg j+1 f
| = ], Vi - l( ) k ld
s P()

Assume the rows ofM are linearly dependent. Then there exist constantsl, such that

k=1
Explicitly, this implies
z z !
x e i X k 1 d
S = dk P forJ =4, g
k= P() i ke P()
We show this implies that the holomorphic di erential
X X
f = dk k lp d - dk k ld7,
k=1 P() k= w
has zeroa periods. Compute
I
Z j+1 k1 1 Z i+t k1 z i k 1 ' 1' k 1
d = = d + d =2
w 2 w w 2 4 0w

i i i+l

Indeed, f integrates to zero around everya cycle implying thatf is the zero di erential, see Lemma 2.1. But
since each of ¥ lw 1d is linearly independent we conclude that, =0, k =1;:::;g and the rows ofM
are linearly independent. The Moment Problem is uniquely slwable.

10



If we select ; to make all my vanish we use the condition

|!I1m xt )y= 1 1
in conjunction with (5.2) to obtain a RHP for . It is important that in Problem 5.1 is real valued. This
implies the piecewise-constant jump matrix in (5.2) is bourded for all x and t.

5.2 Poles in the gaps

In this section we show how to use an additional BA function tq in e ect, reduce the case where j (0;0) 2

(j; j+1) to that of ;(0;0) = ;. We assume that not all poles of lie on the band endsf J-gjgzl.

Consider the planar representation of a BA function ( ) which satis es

0 1 [

10 0 2Ce1)L (i
j=1

p (GG )= (x5t )

(6t )= e e OZ (1+0( )

X H j 1=2
()= it; ! ;2R
i=1

with poles at j. The goal is to choosef t; gf’zl so that ( ) has zeros precisely at the poles of . De ne
() = ( p) . The planar representation = p With entry-wise multiplication will now have

poles at ; and zeros at the zeros of . We nd by rst nding two functions () and ( ) both of
which have poles atf (0; J-)ng:l and dividing. Thus, the general case of poles in gaps is redad to poles at
band ends provided we can nd the requiredft; gj’é':1 .

Remark 5.1.  We are using the term poles loosely. O, p has unbounded square-root singularities while
on , ( p) has poles.

We show that we can choosé t; gjgzl so that the zeros of ( ;) will be at an arbitrary divisor

x
D°=  Rj; R 24:
j=1
We rst state a lemma about the location of the zeros and polesof a BA function.

Lemma 5.2. [2] Let D° be the divisor of the zeros of the BA function andD be that of the poles. Assume
()= @+0ok 1); k!l ; K2=: (5.4)

On the Jacobi variety J ()
A(D9Y= A(D) V; (5.5)
whereV is the vector of theb-periods of a normalized Abelian di erential of the second knd that satis es
(Q) = dalk) + O(k 2)Olk'1 k=k(@Q!'!1 ; (5.6)

=0; V= =100 (5.7

a by

Conversely, if two divisors satisfy (5.5) then they are the divisors of the poles and zeros of some BA fciion
which satis es (5.4).

To determine , we haveD and D® We need to show we can choose = d + O(k 2?)dk so that (5.5)
holds. The following lemma provides this result.

11



Lemma 5.3. Assume

D= Q; DO:. Ri; Q;Rj24q:

satis es the properties in (5.6) with q(k) = (k), and ; can be constructed explicitly.
Proof: Dene ; to be the Abelian di erential of the second kind with principal part (see Section 2)
;=] 1) k¥ 3+0(k ?) dk; k!l ;

where 1=k is a parameter in the neighborhood ofL . For j 1, we choose a path of integration that lies on
one sheet. We have

Z
= 1P+ 0o() F?)as 11
0

De ne

ﬂ .

= GG+ )

j=1

where ; is a holomorphic di erential chosen so that ; + j has vanishinga periods. We dene j =i(;+ ;).

Consider the system of equations
I

by
It follows that (see Lemma 2.4)

| .
X 1 @32
= it] ————5—5"k(2) o k=1;::1;0:
o u @ 2lad 2,
Here z is a local parameter in the neighborhood ofL : z(1 ) = 0 and !¢ = r¢(z)dz. To compute these

derivatives we again use a convenient basis, not normalizetor the holomorphic di erentials:

Set =1=72 and compute

! 1=2

_ ¥
22291 1 juz) @O 2@ 2 dz
i=1

£
I

sj (z)dz:

It is clear that the matrix

2k 2
Ay = Wsj (2);

12



is triangular with non-vanishing diagonal entries. There «ists an invertible linear transformation from
fuig’.; to flkgi_,, and sinceA is invertible, it follows that the system

=V, fork=1;:::;0 (5.8)
by

is uniquely solvable forf t; gjg:1 . This proves the existence of a BA function with asymptotic éhavior (5.4)
and one arbitrary zero on eacha cycle.

In summary, the BA function ( ) =( p) has poles located at (; ; 0) and one zero on eacla-cycle
corresponding to the zeros of . We show below how to compute such a BA function. We use the appach
of Section 4 to formulate a RHP for ( )

01 [°
10 0 2Caas)0 0 (i) (5.9)
j=1
eiWI 0 [g
pOGt )= 6t ) To w5 20 (gioga) (5.10)
j=1

p (Gt )= (k)

where each of theW; 2 R is chosen so that theg-function

Gp<>:pP<>>@Z M (9)+ W, ds
2 . TRPOY s

; (5.11)

satises G( )= O( *?)as !1 . Theorem 5.1 provides a well-de ned map fromft;g’_, to fw;g’_; .
Furthermore each W, can be taken modulo 2. The RHP for ( ;) is similar but ( ) must be replaced
with ( )+2ix 72 +8it 32 to account for the x and t dependence in . In this case we write Wj (x;1).
This is elaborated below.

6 A Riemann{Hilbert problem with smooth solutions

The numerical method described in [20] requires solutionsfahe RHP to be smooth. We need to deform the
RHP to take into account the singularities explicitly if we wish to solve it numerically. In this section, we
assume the divisor for the poles of the BA function is

X3
D= (;;0)
i=1
and that the ;(x;t) are chosen so that the moment conditions foiG are satis ed. We replace j(x;t) with

W; and W, (x;t) in the case of ( ;) and( ) , respectively. In light of the previous section, all other @ses
can be reduced to this. De ne

C e Yo , j(xt)=(2 )
g )= WED 0 kg )= — = :
O 1_ (thv ) . i
j=1
The branch cut for to be along the intervals [ j; ;+1] and we assume ;(x;t) 2 [0;2 ). Note that
satis es
g i(xt) 0
Tt )= () 0 el o 205 ga)
De ne
p
1 1 1+ n+1
H = - ;
( ) 2 11 P n+1



where the function P n+1 has its branch cut on [ h+1;1 ), and satis es P n+l ij j¥2 as
11 to x the branch. The last function we need is the g-function matrix

eG (xt; ) 0
G(X,t, ): 0 eG(x;t; )
Note that if we were solving for ( ;) or ( ;) we would replaceG with (5.11).
We introduce a local parametrix for what follows. Consider the RHP

0 c

YYOEY () e g

2 (a;b); (6.1)

where we do not specify the asymptotic behavior since we wisto obtain multiple solutions. We claim that
the function

Y(;ab;;ic)= ' a)lz(c 0 = i a)l( 0 , 1 = ;;

is a solution of (6.1). We choose the branch cut of ( a) ( b) to be along the interval [a; b with
( a( b * as !1 . To simplify notation we de ne Jj(x;t) =diag(e ' i*t); e (X)) and

Y
Y

Figure 3: The contours and jump matrices of the RHP for

_ 01
Jo= 1 ¢
We need a local parametrix at each point ; or ;. This motivates the de nition

At )=Y(,; 1, 1,1=2, 1=2,1);
At )=Y (5 gy 31220 1=22exp( i) a(xt))); j =259+,
Bi(xt )=Y(; j; ;172 1=2Zexp( i j(xt); j=15:11,0

This allows us to enforce boundedness at each; with a possibly unbounded singularity at ;. The matrices
A; are used locally at ; andB; at ;.
Consider the following example. The general case can be infed from this.

Example 6.1 (Genus two). Our initial RHP is (5.2) with the condition

l!'lm (xt; )= 1 1

1

see Figure 3. First, we introduce a circle around 3 = 4+1. In addition we place a large circle around all
the gaps, see Figure 4. Now, we rede ne our function in various regions. Dene ; by the piecewise
de nition in Figure 5(a). We compute the jumps satis ed by 1, see Figure 5(b). An important calculation

isthatif ((x;t; )= 1 1 +O( 1) then

|
+
11 +0( Y iipif‘i
n

106t YJH () %

1 1 +0(

This allows us to obtain functions with the correct asymptdt behavior.

14



We present the deformation in the interior of the large circk in Figure 5(a). See Figure 6(a) for the
piecewise de nition of , and Figure 6(b) for the jumps and jump contours for ,. While this RHP can be
solved numerically, we make a nal deformation to reduce thenumber of contours present. De neD to be

the region inside the large outer circle but outside each ohe smaller circles around ;; ;. Then de ne
- Tyt ; :

3()(;’[; ) = Z(X:t: ) (X,t, ) if 2 [?,

2%t ) otherwise

See Figure 7 for the jumps and jump contours of the RHP for 3. We refer to this as the deformed and
regularized RHP associated with

Figure 4: Introducing a large circle around ; and ;.

This resulting RHP has smooth solutions by the theory of [25]Furthermore, the uniqueness of the BA
function gives us existence and uniqueness of the solutiori this RHP. See Appendix A for a more detailed
discussion of the solvability of the RHP. This justi es solvhg for 3 numerically.

6.1 Reconstruction of the solution to the KdV equation

Once the function 3 above is known (at least numerically) we want to extract from it the solution of the
KdV equation. We use that 3 is analytic at in nity and that each component of satis es (3.1). For
large we write

st )= (gt )R )Gt )H (): (6.2)

15



(a) (b)

Figure 5: (a) The piecewise de nition of 1. (b) The jump contours and jump matrices for the RHP for ;.

We nd a di erential equation for 3. Di erentiating (6.2) we nd

@ s(xt )=@ (Xt )Rt )Gt YH( )+
(x;t; Y@R(x;t; )G(x;t; JH ( )+

(x:t YRt @Gt JH():

@ s(xt )= @ (it )RMGEL )Gt YH( )+
@ (xt Y@RMXt )Gt YH( )+

@ (Xt )Rt @Gt )H( )+

@ (Xt )@R(xt )G(xt H( )+

(x;t; Y@R(xt )G(x:t; )H( )+

(Xt @Rt )@G(x;t; )H( )+

@Q (Xt )Rt @Gt )H( )+

x5t @Rt )@QG(xt )H( )+

(x:t; )Rt )@ G(x;t; )H():

We seek to simplify this formula. De ne r( ) =diag(2i '¥2; 2i 17?) then

@Rt )=r( )Rt );
@Rt )= r?( Rt ):

It follows that each  (x;t) depends linearly onx. De ne g( ) =diag( @g(x;t; ); @a(x;t; )), therefore

@G(x;t; )=9( )Gt );
@Gt )= g?()G(xt )

16



(b)

Figure 6: (a) The piecewise de nition of , inside the outer circle. (b) The jump contours and jump matrices
for the RHP for .

Also, R;G;r and g are diagonal and mutually commute. We write

@ s3(xt )=@ (xt )Rt )Gt YH()
+ (6t ROt GGt YH()H HO)r( )+ g )H ()
@ 3(xt )= @ (xt RMGE )Gt YH()
+2@ (Xt IRt GGt JH()H *()Ir( )+ g()H ()
+ (6t ROGE GG JH()H ()E%( ) +2g( )r( )+ r?()H():

We proceed to eliminate . Since@ = u(x;t) , we obtain

@ 3(xt )= u(;t)] st )+2@ a0t YH ()g( )+ r()H()

6.3
s(t JH (O )+ r(PH (): ©3

Set s(x;t; )= 1 1 + ci(x;t)= + O( ?) and substitute, assuming each derivative of 3 has an
induced asymptotic expansion,

@cix;t)= +0O( =] utI( 1 1 +cu(xt)= +O( 2))
+( 1 1 +@ci(xt)= +0O( 2)H (g )+ r( NH()
+H 1 1 +ci(xt)= +0( 2)H (g )+ r(PH():

It can be shown that the O( ) terms on each side of this equation cancel. Equating theD(1) terms we
obtain

u;t) 11 = lim @ci(x;t)=H YONg( )+ r(H ()

lim (1 1 +cat)= +0( HH *ONg( )+ r(PH()

17



Figure 7: The nal RHP for 3. The same deformation works for RHPs which arise from arbitary genus
BA functions by adding additional contours.

Equating @ci(x;t) = si(x;t) sz(x;t) and working this out explicitly, we nd

u(x;t) = 2i(sa(x;t)  si(x;t)) + 2iE; (6.4)
x@ 2. : -
E = i @néxi_‘?lzgd:
2 e o P()

6.2 Regularization of the RHP with poles in the gaps

In this section we deal with the case where the divisor for thepoles of the BA function is of the form

x9
D= Qi; Qi 2 a:

i=1

We have proved existence of a BA function with one arbitrary 2ro on eacha-cycle. We consider the BA
function ( ) =( p) which has poles located atff (0; ,-)gjg:l and one zero on eacla-cycle. In this
section we assume we knowsy;to;::: which are required to nd ( ) . In the next section we discuss
computing ft; g’_; . It follows that

() ezt (6.5)

where

X _
Z(xt; )= ()+2ix TP+8it P =2i(x+ty) TPH2i(At+ty) P20 G D=
j=3

Using the techniques in Section 6.1 we see this is all the infmation that is needed to set up a solvable RHP
for ( ;) with smooth solutions.

18



We have to extract the solution to the KdV equation from ( ) . We solve for a function 3, the
deformation of |, that satis es

st )= (it OR(GE )Gt ) p( JH(); (6.6)
o()=diag p();
for large . If we perform the same calculations which results in (6.3).We obtain
@ s(xt )= uGt)] st )+2@ s0at H T p() Mo )+ ()] p(IH()
s06t OH FO)C p() M)+ r(N? pOIH():

But 8 is diagonal and commutes withg and h. Therefore, all g dependence cancels out. We see that
(6.4) is invariant under multiplication by () . Thus, the solution u(x;t) to the KdV equation is extracted
from 3 by (6.4). We summarize our results in the following theorem.

(6.7)

Theorem 6.1. If 3(x;t; ) is the solution of the deformed and regularized RHP associadewith ( ;) and
36t )= 101 +ci(xt) T+ 0( 2); cxt)= si(xt) sa(xt)
then the corresponding solution of the KdV equation is foundhrough
u(x;t) =2i(sa(x;t)  si(x;t) + 2iE;
107 @y 2 1

E =
YV —
2 j=1 P()

gd,

where f W; (x;t)gj1:l are de ned by the moment conditions for (5.11) with () replaced withZ(x;t; ).

This theorem states that despite the theoretical use of thedinction ( ;) , the computation of the solution
to the KdV equation does not require the computation of ( ) .

7 Numerical computation

In this section we discuss the computation of all the componets of the theory. These components are:
1. Evaluating contour integrals used in the Abel map and the noment problem.
2. Computing the singular integrals used in the representabn of the g-function.
3. Solving the deformed and regularized RHP for the Baker{Akiezer function.

4. Extracting the solution to the KdV equation from the Baker {Akhiezer function.

7.1 Computing contour integrals

The developments above require the computation of integra of the form
j+1 f ( )
——F
, P()
to determine the g-function and compute ;=W . Note that in the cases we considef is analytic near the
contour of integration. Also, we compute the Abel map of divisors whose points lie in gaps. We always

chooseQp = ( 1;0) in (2.1) and integrate along . across the bands and gaps. Thus computing the Abel
map of a point in a gap requires computation of integrals of the form (7.1) along with integrals of the form

1 (f)= d; (7.1)

Y4
Ki(f)= fp( ) _d;
j f() (7.2)
|j(f; ): .p%dSZ
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While numerical integration packages can handle such integls, it is bene cial to use Chebyshev poly-
nomials. For example, de ne

We change (7.1) to

1 f(m Y(9)

—dm *(s):
1 P(m (s))

lj(f)=
The function
P 1 <2

S ROk

is analytic in a neighborhood of the interval [ 1;1]. We write
b |
Y f(m X9)

v PRm ey

d ds
W(s)d—sm L(s) P

i (f)=

The Chebyshev series approximation of the function in parethesis converge exponentially since it is analytic
in a neighborhood of [ 1;1]. A discrete cosine transform is used to approximate the sees and the rst
coe cient in the series gives a very good approximation tol; (f ). Similar ideas work for K; (f ) but we must
modify our approach for I; (f; ). Consider the integral

Z
Fo()=  Tal0Po: 2 (L)
1 1 x

Here T, denotes the nth-order Chebyshev polynomial of the second kind. Using thestandard change of
variables x = cos

Z arccos Z arccos
Fn( )= Tn(cos )d = cosh )d:
Therefore
sin(n arccos ) .
2= 2 ifn> 0
F = n . '
() arccos if n=0:

Using the change of variablesn( ) and the discrete cosine transform we can compute eadh (f; ) with this
formula.

Weneed to computeb periods. The b cycles have a more complicated relationship. Consider theycles
B in Figure 8. We compute

I 4

w=2  f()d:
5 i

From Figure 8, we see thatby = B, andb = B + I ;. This gives a recursion relationship forb cycles.
We must know !  before computing the Abel map. We describe how to compute thenormalized di er-
entials. Let! = f( )d be a holomorphic di erential, we showed in the proof of Theoem 5.1 that

I Z j+1

w= 2 f()d:

aj j
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n 1

Up = d; n=1;:::;0;

and compute their a and b-periods. This allows us to construct the basid x of normalized di erentials and
gives us access to the Abel map.

AssumeQ = ( ; P( )+) 2 @ for = 1. Then the kth component of the Abel map is computed by

D(l
AQ)k = (h(f)+ Ki(fi)+ Ki(fik)+ 1 (ks )

1=1

wheref,( )=w is the principal part of ! \, the kth normalized holomorphic di erential.

7.2 Computing the g-function
The g-function is de ned by

POYX = in (xts)+i j(xt) ds
2i “@* s

; (7.3)

see (5.1). After mapping each interval of integration in (73) using a linear change of variablez = m; (s)
(m; :[j; j=a]! [ 1;1]) we have the expression

p Z
_ POYX® =t dz
G(x;t; )= > o lHj(Z)W,
where
- 1 S e
M= OSEm @00,

P(m, X))

Note that F;j(z) = H; (z)p 1 zZis analytic in a neighborhood of [ 1;1]. We use
_ P Fi(z) _ dz
2, .z m()'1 2

This reduces the problem of computing theg-function to that of computing integrals of the form

Z
15t i) 1 _ .
CO=37 & Y= %L
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wheref is a smooth function on [ 1;1]. We use the known expansion of the function #(s ) in a Chebyshev
series [23]
8 .
V) > = ifj =0;
= )T §()=
i=0 :

( P 271)1 .
2 —p——= otherwise

Here T, is the j th Chebyshev polynomial of the second kind [23]. This formuk is technically valid for > 1
but can be extended toCn[ 1;1] by analytic continuation. We use a discrete cosine transfrmation of order
n to approximate the Chebyshev series of :

X
f(s) G T (s):
j=0
Orthogonality gives
0 1

1 X0
CO) 3T @eom)t 5 aaOA:

Exponential convergence is guaranteed since in our cageis analytic.
Alhough it is not important for our purposes, one may wish to compute the limiting values G as
approaches a gap from above or below. We use the formula [19]

1
2

V4
1 Tj (s) o ds _ }T-( )
NPT & 2

vor 20 q4s (1)1 U () 2( L)

where Uy is the Chebyshev polynomial of the rst kind [23].

7.3 Computing the Baker-Akhiezer function

This section is concerned with computing ( ;) . Let D be the divisor for the desired zeros of the BA
function and D be the divisor for the poles. We compute the vector (see (5.9)

V = A(D° D);

using the method for computing integrals described above. Bixt, consider the di erentials

which satisfy

We accurately compute the a-periods of ;. We construct f ~ gj@':1 which each have vanishinga periods by
adding an appropriate linear combination holomorphic di erentials. We compute the matrix
|

Skj = -
by

The systemSX = V is solved for the real-valued vectorX , giving a di erential
X
| = X i %5
j=1
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that has bperiods equal to the vectorV . The nal step is to compute the coe cients ft; gjg:l in the expansion

z X
I= " ita " P+ O( )= ()=2+0( )
0 n=1
The BA function with asymptotic behavior ( p) e ()72 as 11 has zeros at the points ofD°.
Theorem 6.1 tells us to seek () e 2t )32 35 11 . We construct the deformed and regularized

RHP for ( ) , see Section 6. This RHP is solved numerically.

To test the method we use ; =0; ;= :25_,=1; , =1:5and 3 =2. Thus we have a genus two
surface. We choose zeros to be at the pointsg;, P(:5) ) and (1:75; P(1:75)+ ). To approximate the BA
function we usen collocation points per contour. See Appendix B for a more thoough discussion of the
numerical method for RHPs that is used and its convergence mperties. The roots of the approximate BA
function are found using standard Chebyshev root- nding techniques [3]. In Figure 9 we plot the absolute
error of the roots asn increases. Spectral convergence of the roots is observedeeSFigure 10 for a surface
plot showing both the zeros and the poles of the BA function ona single sheet. See Figures 11 and 12 for
contour plots of the real part, imaginary part, and modulus of the BA function on each sheet. Note that
producing this plot requires the computation of the g-function. These plots are all produced in the genus
two case but higher genus BA functions can also be plotted.

I i
! "l #l $! %!

Figure 9: A demonstration of the spectral convergence of theeros of the BA function.

!

Figure 10: A three-dimensional plot of the modulus of the BA fnction on one sheet of the Riemann surface.
We see two poles and two zeros are clearly present.

7.4 Numerical solutions of the KdV equation

Before we move to numerical results for the KdV equation, letus review the solution process. The constants
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@ (b) ©

Figure 11: A genus-two Baker{Akhiezer function. Darker shales indicate smaller values. Two poles and two
zeros are clearly present. (a) The real part of .. (b) The imaginary part of .. (c) The modulus of ..

N7

"o oo s s

[ 4

@ (b) ©

3 -3 -2 -1 0 1 2 3,

Figure 12: A genus-two Baker{Akhiezer function. Darker shales indicate smaller values. (a) The real part
of . (b) The imaginary part of . (c) The modulus of
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and the unnormalized di erentials ux. The a periods of these di erentials are computed using Chebyshev
polynomials and the normalized basis! « is constructed. Next, one point in eacha-cycle is chosen to be a
pole of the BA function. These points make up the divisor for the poles of the BA function. The Abel map
of this divisor is computed, along with the Abel map of the divisor

X3
D= (5:0):

j=1
Through the process just outlined the constantst;, j = 1;:::;g are computed. The Riemann{Hilbert
formulation is used to compute the function ( ;) by noting that its asymptotic behavior is (6.5). The
function 3 is found and u(x;t) is computed using Theorem 6.1.

In this section we plot numerical solutions of the KdV equation. In the genus two case we use numerical

tests to demonstrate uniform spectral convergence.

7.4.1 Genus one

For a genus one solution we set; =0; ; = :25and , = 1 with the zero of the BA function at ( :5; P P(:5)+)
att = 0. See Figure 13 for plots of the corresponding solution of e KdV equation. This solution is an
elliptic function. Explicitly, [5],

u(x;t)=  ,  1+2cn?(x K@ 1)+1:0768 (81 )2 4 , Itl  4);

where K (k) is the complete elliptic integral and cn is the Jacobi cn furction [19]. The shift inside the cn
function is computed numerically. See Figure 13 for anothesolution.

7.4.2 Genus two

For a genus tw% solutlon we set 1 =0; 1 = 25 2=1; ,=1:5and 3 =2 with the zeros of the BA

function at (:5; P(:5) 5) ) and (1:75; P(1:75) 75) ) at t = 0. See Figure 15 for plots of the corresponding
solution of the KdV equation.

For this solution we numerically discuss convergence. We @, (X;t) to denote the approximate solution
of the KdV equation obtained with n collocation points per contour of the RHP. We de ne the Cauchy error

Enm (Gt) = jun(X;t)  um(X;t)j:

We x m =80 and let n vary: n = 10;20,40. See Figure 14 for plots oE,m (x;t) for various values of x
and t. This gure demonstrates uniform spectral Cauchy convergace of the function u, (x;t) to u(x;t), the
solution of the KdV equation.

We plot another genus two solution in Figure 15. If we shrink the widths of the bands we can obtain
solutions which are closer to the soliton limit. See Figure & for a solution demonstrating a soliton-like
interaction.

7.4.3 Genus three

For a genus three solution we set ; =0; 1= :25 ,=1; ,=2; 3=2:5 3=3and 4 = 3:5 with the
zeros of the BA function at (:5;' P(:5) ), (1:75 P(1:75) ) and (2:75, P(2:75) )att=0. In Figure 17
we show the jump contours for the RHP which are used in practie to compute the BA function. See Figure
19 for plots of the corresponding solution of the KdV equation and Figure 18 and Figure 19 for another
genus three solution. We show the dynamics of the zeros of thBA function in Figure 18.

7.4.4 Genus ve

Just to demonstrate the breadth of the method we compute a gems ve solution. We set ; = 0; ; =
25 o =1; ,=2; 3=25 3=3; 4=33 4=35 5=4; s=5:1and ¢ =6 with th%zerosofthe
BA function at (5, P(5) ), (2:2 P(22) ), (3:2 P(32) ), (3:6; P(3:6) )and (53 P(5:3) ) at
t = 0. See Figure 20 for a plot of the corresponding solution of he KdV equation. This gure shows the
time evolution.
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@ (b)

©) (d)

Figure 13: (a) A contourpplot of the genus one solution with ; =0; ; = :64 and , = 1 with the zero of
the BA function at ( :75; P(:75)+) at t = 0. Darker shades represent troughs. (b) A contour plot of the

genus one solution with ; =0; ; = :64 and , = 1 with the zero of the BA function at ( :75; P(:75)+)
at t = 0. Again, darker shades represent toughs. (c) A three-dimasional plot of the solution in (a) showing
the time evolution. (d) A three-dimensional plot of the solution in (b) showing the time evolution.
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Figure 14: (a) A logarithmically scaled plot of E.go(x; 0) for n = 10 (dotted), n = 20 (dashed) andn = 40
(solid). (b) A logarithmically scaled plot of Ep.go(x; 25) for n = 10 (dotted), n = 20 (dashed) and n = 40
(solid). This gure demonstrates uniform spectral convergence.

8 Conclusions

We have constructed a method to characterize all Baker{Akhezer functions which arise from nite-genus
solutions of the KdV equation in terms of a classical RiemanfHilbert problem with smooth solutions.
The computational cost to compute the solution to the KdV equation to desired accuracy is seen to be
independent ofx and t.
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A Analysis of the deformed and regularized RHP
In general we consider a RHP form
()= ()G();, 2 5 (1)=1 (A.1)

where is bounded and G depends onf ; (x;t)g’.; , or alternatively fW; (x;t)g’.; . We follow [25, 26] (see
also [21]). We start with a few de nitions. Given a self-intersecting piecewise smooth, oriented and bounded
contour C dene ( to be the set of self intersections. De ne the Cauchy integraof a function de ned
on

z
1 f(s)
f()= z— ——ds; 2 :

Cf() T S ds; 6

For 62 ¢ we de ne
z
. 1 f(s)
cf()=lm -— ———ds;

) to 2i s ( ()
where is the positive unit normal to . It is well known that this lim it exists for almost every and the
corresponding operators are bounded from.?() to itself [6, 16]. A matrix-valued functon G: ! C? ?
is said to be inHX() ifitis an H¥ function when restricted to each non-self-intersecting component of .
Here HX refers to the k-order L?-based Sobolev space, see [1, 21].
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Figure 15: (a) A contour plot of the genus two solution with ; =0; 1 =:25 ,=1; ,=15and 3=2
with the zeros of the BA function at (:5; P(:5)+) and (1:75; P(1:75)+) at t = 0. Darker shades represent
troughs. (b) A contour plot of the genus two solution with  ; =0; ;=:25 ,=1; ,=2and 3=2:25
with the zeros of the BA function at (:5; P(:5)+) and (2:2; P(2:2)+) at t = 0. Again, darker shades
represent toughs. (c) A three-dimensional plot of the soluion in (a) showing the time evolution. (d) A
three-dimensional plot of the solution in (b) showing the time evolution.
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Figure 16: A genus twopsolutlon with ;=0; 1= O 1, ,=1; ,=1:05and 3 =1:75 with the zeros of

the BA function at (:5;° P(:5) ) and (1:2; P(1:2) 2) ) at t = 0. This solution demonstrates a soliton-like
interaction.

De nition A.1. Assume o 2 o and G 2 HK() . Let ;:::; m be a counter-clockwise ordering of
subcomponents of which contain = ¢ as an endpoint. We de ne G; by Gj-, if i is oriented outwards
and (Gj ,) ! otherwise. We sayG satis es the (k  1)th-order product condition if using the (k  1)th-order
Taylor expansion we have

Gi=1+0 ( o) s forj=1;::0k 1, 8 92 o (A.2)
i=1
De nition A.2. Assume that 2 g andlet 1;:::; mn be a counter-clockwise ordering of subcomponents
of which contain = g as an endpoint. Forf 2 H() , de ne
£0) = lim, , & "#j () if | is oriented outward, (A3)
limz di ' fi, () if | is oriented inward.

We say thatf satis es the (k 1)th-order zero-sum condition if

0
f))=0; forj=0;:::;k land8 o2 o (A.4)
1=1

We use the notationHX() to denote the closed subspace &f*() consisting of functions that satisfy the
(k  1)th-order zero-sum condition.

A contour is said to be complete ifCn = ;[ where .\ = ? and lies to the left (right) of
. A contour can always be augmented to a complete contour andmatrix-valued functions can be extended
to be the identity on these added contours.

Proposition A.1.  [26] Let be a complete contour ands 2 H¥() . Assume thatG satis es the (k  1)th-
order product condition. Then G has an algebraic factorization

G=G 'G.:;
such thatG 2 HX(@ ).

29



Figure 17: The jump contours for the RHP which are used in pratice to compute the BA function. Here
1=0; 1=:25 ,=1; ,=2; 3=25, 3=3and ,4,=3:5.
This results in the following theorem.
Theorem A.1. [26] The operator! Cg de ned by
(I Cou=Cull G) C [u(l G

is Fredholm on HX(@ +)\ HX(@ ) and has Fredholm index
Z A

ind(I Cg )= Ii dlog detG. dlog detG

Furthermore, = I+ C[ (G+ G )], : ! C? 2 is a solution of the RHP
= Gyon ; (1)=1
if isasolutionof(l Cg ) =1.
If we partition = 1[ [ m intoits non-self-intersecting smooth components we obtai
o Z z
ind(l Cg )= 2 dlog detG. dlog detG
=1 I !
Z Z
x det G, X
= 2 dlog———= 2 dlog detG:
AP gdetG NP g

We apply this result to the RHP derived in Section 6. We useG to denote the jump matrix. We note

that when we augment the contour,G = | on all added pieces and these do not contribute to the integria
Also, det =1 away from ;, ; and detJo = 1. Both of these do not in uence the index. We are left
with |
. 1 4 g '
ind(I Cg )= - dlogdetA( )+ dlogdetB ( )
I=1 C, ¢
1 z 1 z
— dlogdetH () — dlogdetA g+ ():
I @ i ¢

g+l
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Figure 18: A genus three solution with ; =0; ;=:25 ,=1; ,=2; 3=2:5; 3=3and 4 =3:5with
the zeros of the BA function at (:5; P(:5)+ ); (2:2; P(2:2)+) and (3:2; P(3:2)+) at t = 0. These plots
show the dynamics of the zeros of the BA function. The top plotin each panel gives a schematic of the
Riemann surface with the a cycles labeled. Dots of the same shade across the panels amecorrespondence.
The + on the plots represents where the pole of the BA functionis located on the Riemann surface. These
points are also the locations of the zeros at = 0. (a) The solution at t = 0. We vary x from x =0 up to

x = 0:25 and plot how the zerosf 1(x; 0); 2(x; 0); s3(x; 0)g move on the Riemann surface. (b) The evolution
of the same solution up tot = 0:125. We x x = 0 and plot how the zerosf 1(0;t); 2(0;t); 3(0;t)g move
on the Riemann surface.
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(@) (b)

© ()

Figure 19: (a) A contour plot of the genus three solution with ; =0; ;1= :25 ,=1; ,=2; 3=25 3=

3 and 4 = 3:5 with the zeros of the BA function at (:5; P(:5) ):(2:2. P(2:2) ) and (3:2,° P(3:2) )

at t = 0. Darker shades represent troughs. (b) A contour plot of the genus three solution in Figure 18.
Again, darker shades represent toughs. (c) A three-dimensnal plot of the solution in (a) showing the time

evolution. (d) A three-dimensional plot of the solution in Figure 18 showing the time evolution.
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(b)

Figure 20: (a) A contour plot of the genus ve solution with 3 =0; 1= :25 ,=1; ,=2; 3=25 3=
3; 4p: 3:3, 1 =35 5=4; s =5:1and g = 6 with thepzeros of the BA function at ( :5; P(:5)+),
(2:2; P(2;2)+), 3:2 P(3:2)+), (3:6; P(3:6)+) and (5:3; P(5:3)+) at t = 0. Darker shades represent
troughs. (b) A three-dimensional plot of the solution same ®lution showing the time evolution.
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HereC ;C , are the circles around ;; ;, and D is again the region inside the large outer circle but outside
each of the smaller circles, as before. Straightforward cdaur integration produces
Z
dlogdetA( )= i
z ¢
dlogdetB( )= i
VL
dlogdetH ( )= i
@
This proves that ind(I Cg ) = 0. Every element in the kernel of | Cg corresponds to a solution of
the RHP that vanishes at in nity [26]. Given a matrix-valued solution , we sum the rows to get the vector
representation of the BA function. If we have a vanishing salition we zero out the second row and assume
the rstis non zero. Call the new function . This is still a va nishing solution. Then + c is a solution
of the RHP for any c. Summing the rows of + ¢ we obtain a function di erent from for every c. This
contradicts the uniqueness of the BA function gives thatl Cg must be boundedly invertible by the open

mapping theorem. This shows that all RHPs considered here & uniquely solvable with smooth solutions.
This is the justi cation needed to use the numerical method for RHPs in [20].

B Numerical details and uniform approximation

We consider the RHP (A.1). We useC to denote a generic constant. In this section we explain how wr
approximation of the BA function changes with x andt. We use the results from [21]. For numerical purposes
we consider the operator(JG; ] de ned by

dG;]uUu=U (C UG I): (B.1)
The operator equation
gG;ju= 1 1 (G 1);

is discretized using the method in [20]. We us&;, [G; ] to denote this discretization. Once an approximation
U, to U is known, an approximate solution ,( )= CU,( )+ 1 1 of is obtained. The method
considered is a collocation method and ,, will satisfy the RHP exactly at each collocation point. The residue
of a function at 1 is computed through

Z

I!ilm ¢ ) 1 1)= % U(s)ds:
This is what is used to computes; and s; in (6.4). We make a fundamental assumption.
Assumption B.1.  For the problems we consider the following holds:
KGIG T 'Kivax,) CO n'kAG;] ‘kiegy i |0
where X, and Y, are spaces of mapped Chebyshev polynomials with thé norm [21].
We establish two claims:
kC[G; 1 ki) <C and
KG Ilkwk1 () <Dy for eachk > 0O for constants Dy.

Here WK1 () is the kth-order L' -based Sobolev space [1, 21].

The operator | Cg depends ong constants ; 2 [0;2 ); j = 1;:::;9 in an analytic way. In the
notation of Section A. It follows that the mapping
=( iy )7L G



is continuous from [0 2 )9 to L(HX(@ +)\ HX(@ )). Since the operator is always invertible the same
statement holds for the inverse operator. This implies

Supkl Co kL(Hk(@+)\Hk(@ ) <C:

It is important to note that the operator in (B.1) is dierent from | Cg . While a solution of one can be
mapped to a solution of the other, the operator norms do not shre a clear relationship. What we do know
is that the solution of the RHP will satisfy a similar bound:

SUpk ka(@ OVHK(@ ) <C: (BZ)

Once the unique solution of the RHP is known the inverse of theoperator in (B.1) can be written down [21]:
dG;] 'u=Ccu '] ‘I" ¢ [U I (B.3)

The uniform boundedness of in HY(@ +)\ HY(@ ) implies the uniform boundedness of (B.3) as an
operator on L?(). This establishes the rst claim.

The second claim can be established by di erentiating the junp matrix G. Itis clear that all derivatives
of G are bounded and this bound can be made independent of . This leads to the following theorem which
shows we expect uniform spectral convergence of all needeahttions.

Theorem B.1. If Assumption B.1 holds then ,, the approximate numerical solution of , satis es

1

supj n() ( )j<C n ; forevery 0; ir21fj sj> ;
S

supkU, Uk.2y <L n ; forevery 0:

As a consequence, the approximate solution, (x;t) of the KdV equation satis es

supjun(x;t) u(x;t)j<S n ; for every 0:
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