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Abstract

We derive a Riemann{Hilbert problem satis�ed by the Baker-A khiezer function for the �nite-gap
solutions of the Korteweg-de Vries (KdV) equation. As usual for Riemann-Hilbert problems associated
with solutions of integrable equations, this formulation ha s the bene�t that the space and time dependence
appears in an explicit, linear and computable way. We make use of recent advances in the numerical
solution of Riemann{Hilbert problems to produce an e�cient and uniformly accurate numerical method
for computing all periodic and quasi-periodic �nite-genus s olutions of the KdV equation.

1 Introduction

The goal of this paper is to �nd a new description for the so-called �nite-genus or �nite-gap solutions of the
Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0 ; (x; t ) 2 R � R; (1.1)

and to use this description to compute them.
The �nite-genus solutions arise in the spectral analysis ofthe Schr•odinger operator with periodic or

quasi-periodic potential, where the spectrum has only a �nite number g of �nite-length bands separated by
g gaps. They are explicitly described in terms of Riemann theta functions, parameterized by hyperelliptic
compact Riemann surfaces of genusg. In the context of the periodic problem for (1.1), these solutions play
the same role that is played by trigonometric polynomials for the linear KdV equation ut + uxxx = 0 of (1.1):
the general solution to the periodic problem in the space of square-integrable functions is approximated
arbitrarily close by a �nite-genus solution with su�cientl y high g. An eloquent overview of the extensive
literature on these solutions is found in McKean's review [14] of [15]. Of particular importance in the
development of this literature are the pioneering works of Lax [13] and Novikov [18]. Excellent reviews are
also found in Chapter 2 of [17], Dubrovin's oft-cited reviewarticle [9], and [2], parts of which focus speci�cally
on the computation of these solutions.

The computation of the �nite-genus solutions is a nontrivial matter. Although Lax's original paper [13]
includes an appendix by Hyman, where solutions of genus 2 were obtained through a variational principle,
the now-standard approach of their computation goes through their algebro-geometric description in terms
of Riemann surfaces, see [4] or [12], for instance. Another approach is through the numerical solution of
the so-called Dubrovin equations, a set of coupled ordinarydi�erential equations that describe the dynamics
of the zeros and poles of an auxiliary eigenfunction of the spectral problem, the Baker-Akhiezer function
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[2, 8]. The �nite-genus solution is easily recovered from the solution of the Dubrovin equations [17, 22]. One
advantage of all these approaches over the variational method employed by Lax and Hyman is that periodic
and quasi-periodic solutions are constructed with equal ease. The same is true for our approach, described
below.

The essence of this paper is the derivation of a Riemann{Hilbert representation of the Baker{Akhiezer
function. We construct a Riemann{Hilbert problem (RHP) who se solution is used to �nd the Baker{Akhiezer
function. From this, one extracts the associated solution of the KdV equation. The x- and t-dependence of
the solution appear in an explicit way, so that no time or space stepping is required to obtain the value of
the solution at a speci�c x and t. This should be contrasted with, for instance, the numerical solution of the
Dubrovin equations [22]. Furthermore, just like for the method of inverse scattering [24], the in�nite-line
counterpart of the problem under investigation, this dependence of the KdV solution on its independent
variables appears linearly in an exponential function in the RHP.

In order to solve this RHP, we employ a regularization procedure using ag-function [7]. This simpli�es
the x and t dependence further. The resulting RHP has piecewise constant jumps. Straightforward modi-
�cations allow the RHP to be numerically solved e�ciently us ing the techniques in [20]. This results in an
approximation of the Baker{Akhiezer function that is unifo rmly valid on its associated Riemann surface.
This, in turn, produces a uniform approximation of the associated solution of the KdV equation in the entire
(x; t ) plane.

In this paper, we begin by introducing the required fundamentals from the theory of Riemann surfaces.
Next we use the methods of Chapter 2 of [17] to describe how hyperelliptic Riemann surfaces are used to
solve the KdV equation for a restricted class of initial conditions. The representation of the Baker{Akhiezer
function in terms of a RHP is derived in the next section. The modi�cation of this RHP is discussed in the
two subsequent sections. The �nal form of the RHP is presented in Section 6. In the �nal section the RHP
is solved numerically and the numerical convergence of the method is veri�ed. The method is illustrated
there with many numerical examples.

It is unlikely that this new computational approach to the �n ite-genus solutions of the KdV equation is
competitive in terms of speed, with the classical approach via Riemann theta functions and Riemann surfaces
cited above. Nevertheless, the explicit description of these solutions in terms of a RHP and its numerical
solution may lead to other interesting developments. Furthermore, through the results of [21], the accuracy
of the numerical results is guaranteed for all ranges of the parameters.

2 Riemann surfaces

We use this section to introduce the fundamental ideas from the theory of Riemann surfaces that are needed
below. Most of these fundamental facts can be found in [2, 8].The un�nished lecture notes by B. A.
Dubrovin [10] provide an especially readable introductionand most results stated below can also be found
there.

De�nition 2.1. Let

F (�; � ) = � 2 � P2g+2 (� ); or F (� ) = � 2 � P2g+1 (� ):

The algebraic curve associated with this function is the solution set in C2 of the equation F (�; w ) = 0 .
The desingularization and compacti�cation of this curve is a Riemann surface, � . For this restricted class
of polynomials the associated Riemann surface� is said to be hyperelliptic. We only consider hyperelliptic
surfaces.

De�ne the a cycles f aj gg
j =1 and the b cycles f bj gg

j =1 on the Riemann surface as in Figure 1. The set
f aj [ bj gg

j =1 is a basis for the homology of the Riemann surface. It is well known that the hyperelliptic
surfaces in De�nition 2.1 are of genusg; they can be identi�ed with a sphere with g handles. It is also well
known that a genus g surface hasg linearly independent holomorphic di�erentials, denoted ! 1; : : : ! g. We
choose the normalization

I

a j

! k = 2 �i� jk ; j; k = 1 ; : : : ; g:
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The matrix

B = ( B jk )1� j;k � g ; B jk =
I

bj

! k ;

is known as a Riemann matrix. Although this matrix has import ant properties and is necessary for computing
the theta function representation of the �nite-genus solutions we do not need it directly.

! !
! !

! !

! !
! !

! !

Figure 1: A cartoon of a hyperelliptic Riemann surfaces witha choice for thea and b cycles.

Lemma 2.1 ([9]). Let ! be a holomorphic di�erential on a Riemann surfaces of genusg. If
I

a j

! = 0 ; j = 1 ; : : : ; g;

then ! = 0 .

Lemma 2.2 ([9]). Every holomorphic di�erential f on a genus g hyperelliptic Riemann surface � 2 �
P2g+1 (� ) = 0 can be expressed locally as

f =
q(� )

�
d�;

where q is a polynomial of degree at mostg � 1.

A divisor is a formal sum

D =
kX

j =1

nj Qj ; nj 2 Z;

of points Qj on the Riemann surface. Given a meromorphic functionf on the Riemann surface with poles
at Qj of multiplicity nj and zeros atRj with multiplicity mj we de�ne the associated divisor

(f ) =
lX

j =1

mj Rj �
kX

j =1

nj Qj :

The degree of a divisor

degD =
kX

j =1

nj so that deg(f ) =
kX

j =1

nj �
lX

j =1

mi :

A divisor is said to be positive if eachnj is positive and D > D 0 holds if D � D 0 is positive. We usel(D ) to
denote the dimension of the space of meromorphic functionsf such that (f ) � D .

Lemma 2.3 (Riemann inequality [9]). For a genusg surface, if degD � g then

l(D ) � 1 + deg D � g:
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A divisor D is said to be nonspecial if the Riemann inequality is an equality. De�ne the Abel mapping
for points on the Riemann surface by

A(Q) =
h RQ

Q 0
! 1 � � �

RQ
Q 0

! g

i
; (2.1)

where the path of integration is taken to be the same for all integrals. Note that this is well-de�ned for the
appropriately normalized di�erentials. We extend this map to divisors D =

P k
j =1 nj Qj by

A(D) =
kX

j =1

nj A(Qj ):

Theorem 2.1 ([9]). The Abel map A maps points on the symmetrized Riemann surface to the associated
Jacobi variety J (�) = Cg=f 2�M + BN g for M; N 2 Zg. Furthermore, if the divisor D = Q1 + � � � + Qg is
nonspecial thenA has a single-valued inverse from the Jacobi variety to the symmetrized Riemann surface
in a neighborhood ofA(D).

We do not make use of this theorem directly but include it for completeness. Next, we describe properties
of Abelian di�erentials of the second kind that are needed below

De�nition 2.2. Given a point Q on the Riemann surface and a positive integern, an Abelian di�erential
of the second kind is a meromorphic di�erential that has a single pole of order n + 1 , so that its local
representation is

� n
Q =

�
z� n � 1 + O(1)

�
dz;

with respect to a local parameterz, z(Q) = 0 .

When Q is the point at in�nity we construct these di�erentials expl icitly. As a local parameter we take
z2 = 1=� sinceQ is a branch point. If n is even we set

� n
1 = �

1
2

� n= 2� 1d�:

When n is odd, there is more to be done. First, compute

� j

w
d� = � 2

z� 2j � 3
p

P(z� 2)
dz:

Then

P(z� 2) = z� 4g� 2(1 � z2� g+1 )
gY

j =1

(1 � z2� j )(1 � z2� j ):

Thus

� j

w
d� = � 2z� 2j � 2+2 g

0

@(1 � z2� g+1 )
gY

j =1

(1 � z2� j )(1 � z2� j )

1

A

� 1=2

dz

= ( � 2z� 2j � 2+2 g + O(1))dz:

We choosej = g + ( n � 1)=2 so that

� n
1 = �

1
2

� g+( n � 1)=2

w
d�:

Let � n
1 be the di�erential obtained from � n

1 by adding holomorphic di�erentials so that it has zero a cycles.
We state a lemma concerning theb-periods of these di�erentials.

Lemma 2.4 ([10]). De�ne yk (z) through the equality! k = yk (z)dz and z2 = 1=� . Then
I

bk

� n
1 =

1
n!

dn � 1

dzn � 1 yk (z)

�
�
�
�
z=0

; k = 1 ; : : : ; g:

4



3 The �nite-genus solutions of the KdV equation

We begin by considering the scattering problem associated with the KdV equation. The time-independent
Schr•odinger equation

� 	 xx � u0(x)	 = � 	 ; (3.1)

is solved for eigenfunctions 	(x; � ) bounded for all x. We de�ne the Bloch spectrum

S(u0) =
�

� 2 C : there exists a solution such that sup
x 2 R

j	( x; � )j < 1
�

:

It is well known that for u0(x) smooth and periodic the Bloch spectrum consists of a countable collection of
real intervals

S(u0) =
1[

j =1

[� j ; � j ];

� j < � j < � j +1 < � j +1 :

If there are only n + 1 intervals then � n +1 = 1 . We refer to the intervals [� j ; � j ] as bands and the intervals
[� j ; � j +1 ] as gaps.

Assumption 3.1. S(u0) consists of a �nite number of intervals. In this case we say that u0 is a �nite gap
potential.

De�ne � to be the hyperelliptic Riemann surface associated with the function

F (�; � ) = � 2 � P(� ); P(� ) = ( � � � g+1 )
gY

j =1

(� � � j )( � � � j ):

See Figure 2 for a cartoon. We divide this surface into two sheets. Choose the branch cuts for the functionp
P(� ) along S(u0). We �x the branch by the requirement

p
P(� ) � (� 1)g i j� jg+1 =2 as � ! �1 . De�ne

p
P(� )

+
to be the value lim� ! 0+

p
P(� + i� ). This allows us to de�ne

� � = f (�; �
p

P(� )
+

) : � 2 Cg:

When considering a function f de�ned on � we use the notation f � so that f + (f � ) denotes the function
restricted to � + (� � ). In this way we can considerf � as a function of only � . We need an explicit description
of the a cycles since we take a computational approach below:

ai = f (�;
p

P(� )
+

) : � 2 (� i ; � i +1 ]g [ f (�; �
p

P(� )
+

) : � 2 [� i ; � i +1 )g:

The ai component on � + (� � ) is oriented in the direction of decreasing(increasing)� . This description is
also useful since we will consider poles and zeros lying on the a cycles.

Remark 3.1. There is some inconsistency in the notationf � which is also present in the literature [10].
In what follows, it will be clear from context whether we are referring to a function de�ned on the Riemann
surface or to f + and f � separately.

We introduce further notation that will be of use later. Give n a point Q = ( �; w ) 2 �, we follow [11] and
de�ne the involution � by Q� = ( �; � w). This is an isomorphism from one sheet of the Riemann surface to
the other. It is clear the �rst sheet is isomorphic to the cut p lane

Ĉ = C n

8
<

:
[� g+1 ; 1 ) [

g[

j =1

[� j ; � j ]

9
=

;
;

through the mapping ^ : � + ! Ĉ de�ned by Q̂ = � and its inverse � : Ĉ ! � + de�ned by �� = ( �;
p

P(� )
+

).
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! ! ! ! ! !
! ! !" !! ! ! !

! !

Figure 2: A cartoon of the Riemann surface associated with the �nite gap potential u0.

Lemma 3.1. [17] For every x0 2 R there exist two solutions	 � of (3.1) such that

� 	 � (x; � ) is meromorphic on � n f1g with g poles at

D =
gX

i =1

Qi ; Qi 2 ai ;

and g zeros at

D 0 =
gX

i =1

Ri ; Ri 2 ai :

� De�ne  i = R̂i then f  j gg
j =1 satis�es

 j (x0) 2 [� j ; � j +1 ]; (3.2)

 0
j = �

2i
p

P( j )
Q

k6= j ( j �  k )
: (3.3)

� 	 � (x; � ) = e� i
p

� (x � x 0 ) (1 + O(� � 1=2)) as � ! 1 .

For simplicity we take x0 = 0 below. We will always take the branch cut for � 1=2 to be along [0; 1 )
and �x the branch by � 1=2 � i j� j1=2 as � ! �1 . If the potential u0(x) is taken as an initial condition for
the KdV equation then these zeros have both time and space dependence j =  j (x; t ). This dependence is
given by [8]

_ j = �
8i ( j + u0=2)

p
P( j )

Q
k6= j ( j �  k )

; (3.4)

and the solution to the KdV equation can be reconstructed through

u(x; t ) = � 2
gX

j =1

 j (x; t ) + � g+1 +
gX

j =1

(� j + � j ):

The (now time-dependent) function 	 � (x; t; � ) is known as a Baker{Akhiezer (BA) function. From the
general theory of Baker{Akhiezer functions [17] it is known that it is uniquely determined by a nonspecial
divisor

D =
gX

i =1

Qi ;

for the poles and the asymptotic behavior [17]. The following lemma shows that all divisors we consider are
nonspecial.
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Lemma 3.2. On the hyperelliptic surface� 2 = P(� ) the divisor D =
P g

i =1 Ri , where Ri 2 ai is nonspecial.

Proof. Assume f is meromorphic with D � (f ). The di�erential w = df has double poles with zero
residues at the pointsRi . We have the following representation

w =
gX

i =1

yi + �:

Here yi are Abelian di�erentials of the second kind normalized so that they have zero periods along thea
cycles and second-order poles at the pointsRi . Since f is single valued on the Riemann surface

I

ak

w = 0 ;
I

bk

w = 0 ; k = 1 ; : : : ; g:

Since thea periods vanish we conclude that� has zeroa periods and must be zero. From theb period condition
we obtain

I

bk

w =
gX

j =1

cj  kj (zj (0)) = 0 ; (3.5)

wherezj is a local parameter nearRj = zj (0) and  kj is determined from the equality! k =  kj (zj )dzj near
Rj . We know that ! k can be expressed uniquely as the sum of di�erentials of the form

ul =
� l � 1

�
d�; for l = 1 ; : : : ; g;

with coe�cients dkl . If Rj = ( zj ; �
p

P(zj )) is not a branch point we obtain

 k;j (zj ) =
gX

l =1

dkj
zl � 1

jp
P(zj )

:

If it is a branch point Rj = ( zj ; 0) we use the local parameters =
p

� � zj so that

 k;j (zj ) =
gX

l =1

dkl
2zl � 1

jp
P0(zj )

:

Since the matrix dkl is invertible the condition (3.5) is reduced to the study of the matrix

Z jl = zl � 1
j ;

after multiplying rows by suitable constants. This is a Vandermonde matrix, and thus invertible. This shows
that cj = 0 and thus w = 0 and f = C 2 C. This proves the result. �

Remark 3.2. We have shown that the Abel map is invertible from the Jacobi variety to the symmeterized
Riemann surface in a neighborhood ofA(D) for every divisor we consider.

Being precise, we obtain the following unique characterization of the function 	 � (x; t; � ) [17]:

De�nition 3.1. The BA function for the solution of the KdV with initial condi tion u0(x) is the unique
function that satis�es

� 	 � solves(3.1).

� 	 � is meromorphic on � n f1g with poles at

D =
gX

i =1

Qi ; Qi 2 ai ; Q̂i =  i (0; 0): (3.6)
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� 	 � (x; t; � ) = e� i� 1= 2 x � 4i� 3= 2 t (1 + O(� � 1=2)) as � ! 1 .

� u0(x) = � 2
P g

j =1  j (x; 0) + � g+1 +
P g

j =1 (� j + � j ).

Remark 3.3. Instead of computing the zeros of the BA function we derive a Riemann{Hilbert formulation
of the BA function to compute the function itself. The main bene�t of this approach is that the roles of x and
t in the problem are reduced to that of parameters. This gives an approximation to the solution of the KdV
equation that is uniformly convergent in the(x; t ) plane. In this sense our method is comparable to the theta
function approach which can also achieve uniform convergence [12]. On the other hand, no time stepping is
required, as for the direct numerical solution of the PDE or the numerical solution of 3.2 and 3.4.

In what follows we assume without loss of generality that� 1 = 0. If � 1 6= 0 we de�ne � = � � � 1 and
consider a modi�ed scattering problem

� 	 xx � u0(x)	 = ( � + � 1)	 ; (3.7)

� 	 xx � ~u0(x)	 = � 	 ; ~u0(x) = u0(x) + � 1: (3.8)

Let u(x; t ) and ~u(x; t ) be the solutions of the KdV equation with u0(x) and ~u0(x) respectively, as initial
conditions. If ~u(x; t ) satis�es the KdV equation then so does ~u(x � 6ct; t ) + c. Therefore, by uniqueness,
u(x; t ) = ~u(x + 6 � 1t; t ) � � 1.

4 From a Riemann surface of genus g to the cut plane

Consider the hyperelliptic Riemann surface � from Section 3. We represent a functionf � de�ned on � by a
vector-valued function f on Ĉ by

f (� ) =
�

f + ( �� ) f � (( �� ) � )
�

:

Assume the function f � is continuous on all of �. Let � 2 (� j ; � j ) and de�ne � � � = � � i� . It follows that
lim � ! 0+ �� � � = lim � ! 0+ ( �� � � ) � . From the continuity of f �

lim
� ! 0+

f + ( �� � � ) = lim
� ! 0+

f � (( �� � � ) � ):

Let f � (� ) = lim � ! 0+ f (� � i� ). Then

f + (� ) = f � (� )
�

0 1
1 0

�
:

We form a planar representation of the BA function

	 (� ) =
�

f + ( �� ) f � (( �� ) � )
�

:

The function 	 satis�es

	 + (x; t; � ) = 	 � (x; t; � )
�

0 1
1 0

�
; � 2 (� n +1 ; 1 ) [

g[

j =1

(� j ; � j );

	 (x; t; � ) =
h

ei� 1= 2 x +4 i� 3= 2
e� i� 1= 2 x � 4i� 3= 2

i
(I + O(� � 1=2)) :

The next step is to remove the oscillatory nature of	 for large � . This procedure will a�ect the jumps, thus
some care is in order. De�ne

R (x; t; � ) =
�

e� � (x;t;� )=2 0
0 e� (x;t;� )=2

�
;

� (x; t; � ) = 2 ix� 1=2 + 8 it� 3=2
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The function � (x; t; � ) = 	( x; t; � )R (x; t; � ) satis�es

� + (x; t; � ) = � � (x; t; � )
�

0 1
1 0

�
; � 2 (� n +1 ; 1 ) [

g[

j =1

(� j ; � j );

� + (x; t; � ) = � � (x; t; � )
�

e� � (x;t;� ) 0
0 e� (x;t;� )

�
; � 2

g[

j =1

(� j ; � j +1 );

� (x; t; � ) =
�

1 1
�

(I + O(� � 1=2)) :

(4.1)

This is a RHP for � when the poles at j (0; 0) coincide with � j or � j . The boundary values of the solution
to the RHP should be at least locally integrable [11]. A pole at a band end (� j or � j ) corresponds to a
square-root singularity. In general, we have poles in the intervals (� j ; � j +1 ) where there are smooth jumps.
In Section 5.1 we treat the case where j (0; 0) = � j , j = 1 ; : : : ; g while enforcing that � remains bounded
at f � j gg

j =1 . No such enforcement is made atf � j gg
j =1 . The general case of poles on thea cycles is treated in

Section 5.2.

5 Regularization

We show how the jump conditions in (4.1) can be reduced to piecewise constant jumps. As mentioned above,
we �rst perform the calculations in the simpler case when thepoles are located at (� j ; 0) on �. In the general
case, we use an additional BA function as a parametrix to movethe poles to the band ends thus reducing
the problem to the �rst case.

5.1 All poles at the band ends

We assume j (0; 0) = � j . De�ne the g-function

G(x; t; � ) =

p
P(� )
2�i

gX

j =1

Z � j +1

� j

� � (x; t; s ) + i 
 j (x; t )
p

P(s)
+

ds
s � �

; (5.1)

where 
 j (x; t ) is constant in � and will be determined below.

Lemma 5.1. The g-function satis�es

� G + (x; t; � ) + G� (x; t; � ) = 0 for � 2 (� j ; � j ),

� G + (x; t; � ) � G � (x; t; � ) = � � (x; t; � ) + i 
 j (x; t ) for � 2 (� j ; � j +1 ),

� G(x; t; � )=
p

P(� ) =
P g

k=1 mk (x; t )� � k + O(� � g� 1) as � ! 1 where

mk (x; t ) = �
1

2�i

gX

j =1

Z � j +1

� j

� � (x; t; s ) + i 
 j (x; t )
p

P(s)
+ sk � 1ds:

Proof: The �rst two properties follow from the branching properties of
p

P(� ) and properties of Cauchy
integrals. The last property follows from expanding1=(s � � ) in a Neumann series for large� . �

De�ne the matrix function

G(x; t; � ) =
�

e�G (x;t;� ) 0
0 eG(x;t;� )

�
;

and consider the function

� (x; t; � ) = � (x; t; � )G(x; t; � ):
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Using Lemma 5.1 we compute the jumps of� :

� + (x; t; � ) = � � (x; t; � )
�

0 1
1 0

�
; � 2 (� g+1 ; 1 ) [

g[

j =1

(� j ; � j ); (5.2)

� + (x; t; � ) = � � (x; t; � )
�

ei 
 j (x;t ) 0
0 e� i 
 j (x;t )

�
; � 2

g[

j =1

(� j ; � j +1 ): (5.3)

Since
p

P(� ) = O(j� jg+1 =2), G has growth in � at 1 unless mk (x; t ) = 0 for k = 1 ; : : : ; g. We wish to
determine f 
 j gg

j =1 so that � has the same asymptotic behavior as� as � ! 1 , see 4.1. Thus, we must
solve the following problem which we put in slightly more abstract terms since we make use of it again below.

Problem 5.1 (The Moment Problem). Given continuous functions

f j (� ) : [� j ; � j +1 ] ! C; j = 1 ; : : : ; g;

we seek constants
 j satisfying the moment conditions

0 =
Z � j +1

� j

� f j (� ) + i 
 j
p

P(� )
+ � i � 1d�; j = 1 ; : : : ; g:

Theorem 5.1. The Moment Problem has a unique solution. Further, if eachf j takes purely imaginary
values then each
 j is real valued.

Proof: The second claim follows from the fact that
p

P(� )
+

takes purely imaginary values in the gaps,
[� j ; � j +1 ]. To establish the �rst claim, notice that the Moment Problem is equivalent to the linear system

M 
 = V ;

M kj = i
Z � j +1

� j

� k � 1
p

P(� )
d�;


 j = 
 j ; V i =
gX

j =1

Z � j +1

� j

f j (� )
p

P(� )
� k � 1d�:

Assume the rows ofM are linearly dependent. Then there exist constantsdk such that

gX

k=1

dk M kj = 0 ; for j = 1 ; : : : ; g:

Explicitly, this implies

gX

k=1

Z � j +1

� j

dkp
P(� )

� k � 1d� =
Z � j +1

� j

 
gX

k=1

dk � k � 1

!
d�

p
P(� )

; for j = 1 ; : : : ; g:

We show this implies that the holomorphic di�erential

f =
gX

k=1

dk � k � 1 d�
p

P(� )
=

gX

k=1

dk � k � 1 d�
w

;

has zeroa periods. Compute

Z � j +1

� j

� k � 1

w
d� =

1
2

 Z � j +1

� j

� k � 1

w
d� +

Z � j

� j +1

� k � 1

� w
d�

!

=
1
2

I

a j

� k � 1

w
d�:

Indeed, f integrates to zero around everya cycle implying that f is the zero di�erential, see Lemma 2.1. But
since each of� k � 1w� 1d� is linearly independent we conclude thatdk = 0 , k = 1 ; : : : ; g and the rows ofM
are linearly independent. The Moment Problem is uniquely solvable. �
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If we select 
 j to make all mk vanish we use the condition

lim
� !1

� (x; t; � ) =
�

1 1
�

;

in conjunction with (5.2) to obtain a RHP for � . It is important that 
 in Problem 5.1 is real valued. This
implies the piecewise-constant jump matrix in (5.2) is bounded for all x and t.

5.2 Poles in the gaps

In this section we show how to use an additional BA function to, in e�ect, reduce the case where j (0; 0) 2
(� j ; � j +1 ) to that of  j (0; 0) = � j . We assume that not all poles of 	 � lie on the band endsf � j gg

j =1 .
Consider the planar representation of a BA function (	 p) � which satis�es

	 +
p (x; t; � ) = 	 �

p (x; t; � )
�

0 1
1 0

�
; � 2 (� g+1 ; 1 ) [

g[

j =1

(� j ; � j );

	 p(x; t; � ) =
�

e� ( � )=2 e� � ( � )=2
�

(I + O(� � 1=2)) ;

� (� ) =
gX

j =1

it j � j � 1=2; t j 2 R;

with poles at � j . The goal is to choosef t j gg
j =1 so that (	 p) � has zeros precisely at the poles of 	� . De�ne

(	 r ) � = 	 � (	 p) � . The planar representation 	 r = 		 p with entry-wise multiplication will now have
poles at � j and zeros at the zeros of	 . We �nd 	 � by �rst �nding two functions (	 p) � and (	 r ) � both of
which have poles atf (0; � j )gg

j =1 and dividing. Thus, the general case of poles in gaps is reduced to poles at
band ends provided we can �nd the requiredf t j gg

j =1 .

Remark 5.1. We are using the term poles loosely. On̂C, 	 p has unbounded square-root singularities while
on � , (	 p)� has poles.

We show that we can choosef t j gg
j =1 so that the zeros of (	 p) � will be at an arbitrary divisor

D 0 =
gX

j =1

Rj ; Rj 2 aj :

We �rst state a lemma about the location of the zeros and polesof a BA function.

Lemma 5.2. [2] Let D 0 be the divisor of the zeros of the BA function andD be that of the poles. Assume

	 � (� ) = eq(k ) (1 + O(k� 1)) ; k ! 1 ; k2 = �: (5.4)

On the Jacobi variety J (�)

A(D 0) = A(D) � V ; (5.5)

where V is the vector of theb-periods of a normalized Abelian di�erential of the second kind � that satis�es

� (Q) = dq(k) + O(k� 2)dk; k = k(Q) ! 1 ; (5.6)
I

a l

� = 0 ; V l =
I

bl

�; l = 1 ; : : : ; g: (5.7)

Conversely, if two divisors satisfy(5.5) then they are the divisors of the poles and zeros of some BA function
which satis�es (5.4).

To determine 	 p we haveD and D 0. We need to show we can choose� = d� + O(k� 2)dk so that (5.5)
holds. The following lemma provides this result.
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Lemma 5.3. Assume

D =
gX

j =1

Qj ; D 0 =
gX

j =1

Rj ; Qj ; Rj 2 aj :

Then there exists real constantsf t j gg
j =1 so that the di�erential

� =
gX

j =1

t j � j

satis�es the properties in (5.6) with q(k) = � (k), and � j can be constructed explicitly.

Proof: De�ne � j to be the Abelian di�erential of the second kind with principal part (see Section 2)

� j = (2 j � 1)
�
k2j � 3 + O(k� 2)

�
dk; k ! 1 ;

where 1=k is a parameter in the neighborhood of1 . For j � 1, we choose a path of integration that lies on
one sheet. We have

Z �

� 0

� j = � � j � 1=2(1 + O(� j � 3=2)) as � ! 1 :

De�ne

� =
gX

j =1

it j (� j + � j )

where� j is a holomorphic di�erential chosen so that� j + � j has vanishinga periods. We de�ne � j = i (� j + � j ).
Consider the system of equations

I

bk

� = V k ; k = 1 ; : : : ; g:

It follows that (see Lemma 2.4)

I

bk

� =
gX

j =1

it j
1

(2j � 2)!
d2j � 2

dz2j � 2 r k (z)

�
�
�
�
z=0

; k = 1 ; : : : ; g:

Here z is a local parameter in the neighborhood of1 : z(1 ) = 0 and ! k = r k (z)dz. To compute these
derivatives we again use a convenient basis, not normalized, for the holomorphic di�erentials:

uj =
� j � 1

w
d�; j = 1 ; : : : ; g:

Set � = 1=z2 and compute

uj = � 2z2(g� j )

 

(1 � � j +1 z)
gY

i =1

(1 � � i z)(1 � � i z)

! � 1=2

dz

= sj (z)dz:

It is clear that the matrix

A kj =
d2k � 2

dz2k � 2 sj (z);
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is triangular with non-vanishing diagonal entries. There exists an invertible linear transformation from
f uj gg

j =1 to f ! k gg
k=1 , and since A is invertible, it follows that the system

I

bk

� = Vk ; for k = 1 ; : : : ; g (5.8)

is uniquely solvable forf t j gg
j =1 . This proves the existence of a BA function with asymptotic behavior (5.4)

and one arbitrary zero on eacha cycle.

In summary, the BA function (	 r ) � = (	 p) � 	 � has poles located at (� j ; 0) and one zero on eacha-cycle
corresponding to the zeros of 	� . We show below how to compute such a BA function. We use the approach
of Section 4 to formulate a RHP for (	 p) � :

� +
p (x; t; � ) = � �

p (x; t; � )
�

0 1
1 0

�
; � 2 (� n +1 ; 1 ) [

g[

j =1

(� j ; � j ); (5.9)

� +
p (x; t; � ) = � �

p (x; t; � )
�

eiW j 0
0 e� iW j

�
; � 2

g[

j =1

(� j ; � j +1 ); (5.10)

where each of theWj 2 R is chosen so that theg-function

Gp(� ) =

p
P(� )
2�i

gX

j =1

Z � j +1

� j

� � (s) + iW j
p

P(� )
+

ds
s � �

; (5.11)

satis�es Gp(� ) = O(� � 1=2) as � ! 1 . Theorem 5.1 provides a well-de�ned map fromf t j gg
j =1 to f Wj gg

j =1 .
Furthermore each Wj can be taken modulo 2� . The RHP for (	 r ) � is similar but � (� ) must be replaced
with � (� ) + 2 ix� 1=2 + 8 it� 3=2 to account for the x and t dependence in 	 � . In this case we write Wj (x; t ).
This is elaborated below.

6 A Riemann{Hilbert problem with smooth solutions

The numerical method described in [20] requires solutions of the RHP to be smooth. We need to deform the
RHP to take into account the singularities explicitly if we w ish to solve it numerically. In this section, we
assume the divisor for the poles of the BA function is

D =
gX

i =1

(� j ; 0);

and that the 
 j (x; t ) are chosen so that the moment conditions forG are satis�ed. We replace 
 j (x; t ) with
Wj and Wj (x; t ) in the case of (	 p) � and (	 r ) � , respectively. In light of the previous section, all other cases
can be reduced to this. De�ne

� (x; t; � ) =
�

� (x; t; � ) 0
0 1=� (x; t; � )

�
; � (x; t; � ) =

gY

j =1

�
� � � j +1

� � � j

� 
 j (x;t )=(2 � )

:

The branch cut for � to be along the intervals [� j ; � j +1 ] and we assume 
j (x; t ) 2 [0; 2� ). Note that �
satis�es

� + (x; t; � ) = � � (x; t; � )
�

ei 
 j (x;t ) 0
0 e� i 
 j (x;t )

�
; � 2 (� j ; � j +1 ):

De�ne

H (� ) =
1
2

�
1 1 +

p
� � � n +1

1 1�
p

� � � n +1

�
;
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where the function
p

� � � n +1 has its branch cut on [� n +1 ; 1 ), and satis�es
p

� � � n +1 � i j� j1=2 as
� ! �1 to �x the branch. The last function we need is the g-function matrix

G(x; t; � ) =
�

e�G (x;t;� ) 0
0 eG(x;t;� )

�
:

Note that if we were solving for (	 p) � or (	 r ) � we would replaceG with (5.11).
We introduce a local parametrix for what follows. Consider the RHP

Y + (� ) = Y � (� )
�

0 c
1=c 0

�
; � 2 (a; b); (6.1)

where we do not specify the asymptotic behavior since we wishto obtain multiple solutions. We claim that
the function

Y (� ; a; b; �; �; c ) =
�

� i (� � a) � (� � b) � =c i(� � a) � (� � b) �

1=c 1

�
; �; � = �

1
2

;

is a solution of (6.1). We choose the branch cut of (� � a) � (� � b) � to be along the interval [a; b] with
(� � a) � (� � b) � � � � + � as � ! 1 . To simplify notation we de�ne J j (x; t ) = diag( e� i 
 j (x;t ) ; ei 
( x;t ) ) and

! ! ! ! ! !! ! ! ! !

! !! ! ! !! ! ! !

Figure 3: The contours and jump matrices of the RHP for � .

J 0 =
�

0 1
1 0

�
:

We need a local parametrix at each point� j or � j . This motivates the de�nition

A 1(x; t; � ) = Y (� ; � 1; � 1; 1=2; � 1=2; 1);

A j (x; t; � ) = Y (� ; � j ; � j ; 1=2; � 1=2; exp(� i 
 j � 1(x; t ))) ; j = 2 ; : : : ; g + 1 ;

B j (x; t; � ) = Y (� ; � j ; � j ; 1=2; � 1=2; exp(� i 
 j (x; t ))) ; j = 1 ; : : : ; g:

This allows us to enforce boundedness at each� j with a possibly unbounded singularity at � j . The matrices
A j are used locally at� j and B j at � j .

Consider the following example. The general case can be inferred from this.

Example 6.1 (Genus two). Our initial RHP is (5.2) with the condition

lim
� !1

� (x; t; � ) =
�

1 1
�

;

see Figure 3. First, we introduce a circle around� 3 = � g+1 . In addition we place a large circle around all
the gaps, see Figure 4. Now, we rede�ne our function� in various regions. De�ne � 1 by the piecewise
de�nition in Figure 5(a). We compute the jumps satis�ed by � 1, see Figure 5(b). An important calculation
is that if � 1(x; t; � ) =

�
1 1

�
+ O(� � 1) then

� 1(x; t; � )H (� ) =
1
2

��
1 1

�
+ O(� � 1)

�
�

1 1 +
p

� � � n +1

1 1�
p

� � � n +1

�

=
�

1 1
�

+ O(� � 1=2):

This allows us to obtain functions with the correct asymptotic behavior.

14



We present the deformation in the interior of the large circle in Figure 5(a). See Figure 6(a) for the
piecewise de�nition of � 2 and Figure 6(b) for the jumps and jump contours for� 2. While this RHP can be
solved numerically, we make a �nal deformation to reduce thenumber of contours present. De�ne D to be
the region inside the large outer circle but outside each of the smaller circles around� j ; � j . Then de�ne

� 3(x; t; � ) =
�

� 2(x; t; � )� � 1(x; t; � ) if � 2 D ;
� 2(x; t; � ) otherwise:

See Figure 7 for the jumps and jump contours of the RHP for� 3. We refer to this as the deformed and
regularized RHP associated with	 � .

! ! ! ! ! !! ! ! !

!

Figure 4: Introducing a large circle around� j and � j .

This resulting RHP has smooth solutions by the theory of [25].Furthermore, the uniqueness of the BA
function gives us existence and uniqueness of the solution of this RHP. See Appendix A for a more detailed
discussion of the solvability of the RHP. This justi�es solving for � 3 numerically.

6.1 Reconstruction of the solution to the KdV equation

Once the function � 3 above is known (at least numerically) we want to extract from it the solution of the
KdV equation. We use that � 3 is analytic at in�nity and that each component of 	 satis�es (3.1). For �
large we write

� 3(x; t; � ) = 	 (x; t; � )R (x; t; � )G(x; t; � )H (� ): (6.2)
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(b)

Figure 5: (a) The piecewise de�nition of � 1. (b) The jump contours and jump matrices for the RHP for � 1.

We �nd a di�erential equation for � 3. Di�erentiating (6.2) we �nd

@x � 3(x; t; � ) = @x 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )+

	 (x; t; � )@x R (x; t; � )G(x; t; � )H (� )+

	 (x; t; � )R (x; t; � )@x G(x; t; � )H (� ):

@xx � 3(x; t; � ) = @xx 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )+

@x 	 (x; t; � )@x R (x; t; � )G(x; t; � )H (� )+

@x 	 (x; t; � )R (x; t; � )@x G(x; t; � )H (� )+

@x 	 (x; t; � )@x R (x; t; � )G(x; t; � )H (� )+

	 (x; t; � )@xx R (x; t; � )G(x; t; � )H (� )+

	 (x; t; � )@x R (x; t; � )@x G(x; t; � )H (� )+

@x 	 (x; t; � )R (x; t; � )@x G(x; t; � )H (� )+

	 (x; t; � )@x R (x; t; � )@x G(x; t; � )H (� )+

	 (x; t; � )R (x; t; � )@xx G(x; t; � )H (� ):

We seek to simplify this formula. De�ne r (� ) = diag(2 i� 1=2; � 2i� 1=2) then

@x R (x; t; � ) = r (� )R (x; t; � );

@xx R (x; t; � ) = r 2(� )R (x; t; � ):

It follows that each 
 j (x; t ) depends linearly onx. De�ne g(� ) = diag( � @x g(x; t; � ); @x g(x; t; � )), therefore

@x G(x; t; � ) = g(� )G(x; t; � );

@xx G(x; t; � ) = g2(� )G(x; t; � ):
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Figure 6: (a) The piecewise de�nition of � 2 inside the outer circle. (b) The jump contours and jump matrices
for the RHP for � 2.

Also, R ; G; r and g are diagonal and mutually commute. We write

@x � 3(x; t; � ) = @x 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )

+ 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )H � 1(� )[r (� ) + g(� )]H (� );

@xx � 3(x; t; � ) = @xx 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )

+ 2@x 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )H � 1(� )[r (� ) + g(� )]H (� )

+ 	 (x; t; � )R (x; t; � )G(x; t; � )H (� )H � 1(� )[g2(� ) + 2 g(� )r (� ) + r 2(� )]H (� ):

We proceed to eliminate	 . Since@xx 	 = � � 	 � u(x; t )	 , we obtain

@xx � 3(x; t; � ) = [ � � � u(x; t )]� 3(x; t; � ) + 2 @x � 3(x; t; � )H � 1(� )[g(� ) + r (� )]H (� )

� � 3(x; t; � )H � 1(� )[g(� ) + r (� )]2H (� ):
(6.3)

Set � 3(x; t; � ) =
�

1 1
�

+ c1(x; t )=� + O(� � 2) and substitute, assuming each derivative of� 3 has an
induced asymptotic expansion,

@xx c1(x; t )=� + O(� � 2) = [ � � � u(x; t )](
�

1 1
�

+ c1(x; t )=� + O(� � 2))

+ (
�

1 1
�

+ @x c1(x; t )=� + O(� � 2))H � 1(� )[g(� ) + r (� )]H (� )

+(
�

1 1
�

+ c1(x; t )=� + O(� � 2))H � 1(� )[g(� ) + r (� )]2H (� ):

It can be shown that the O(� ) terms on each side of this equation cancel. Equating theO(1) terms we
obtain

u(x; t )
�

1 1
�

= � lim
� !1

@x c1(x; t )=� H � 1(� )[g(� ) + r (� )]H (� )

� lim
� !1

��
� � � �

�
+ (

�
1 1

�
+ c1(x; t )=� + O(� � 2))H � 1(� )[g(� ) + r (� )]2H (� )

�
:
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Figure 7: The �nal RHP for � 3. The same deformation works for RHPs which arise from arbitrary genus
BA functions by adding additional contours.

Equating @x c1(x; t ) =
�

s1(x; t ) s2(x; t )
�

and working this out explicitly, we �nd

u(x; t ) = 2 i (s2(x; t ) � s1(x; t )) + 2 iE; (6.4)

E = �
1

2�

gX

n =1

Z � n +1

� n

@x 
 n (x; t ) � 2� 1=2

p
P(� )

+ � gd�:

6.2 Regularization of the RHP with poles in the gaps

In this section we deal with the case where the divisor for thepoles of the BA function is of the form

D =
gX

i =1

Qi ; Qi 2 ai :

We have proved existence of a BA function with one arbitrary zero on eacha-cycle. We consider the BA
function (	 r ) � = (	 p) � 	 � which has poles located atf (0; � j )gg

j =1 and one zero on eacha-cycle. In this
section we assume we knowt1; t2; : : : which are required to �nd (	 p) � . In the next section we discuss
computing f t j gg

j =1 . It follows that

(	 r ) � � e� Z (x;t;� )=2; (6.5)

where

Z (x; t; � ) = � (� ) + 2 ix� 1=2 + 8 it� 3=2 = 2 i (x + t1)� 1=2 + 2 i (4t + t2)� 3=2 + 2 i
gX

j =3

t j � (2 j � 1)=2:

Using the techniques in Section 6.1 we see this is all the information that is needed to set up a solvable RHP
for (	 r ) � with smooth solutions.
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We have to extract the solution to the KdV equation from (	 r ) � . We solve for a function � 3, the
deformation of 	 r , that satis�es

� 3(x; t; � ) = 	 (x; t; � )R (x; t; � )G(x; t; � )	 0
p(� )H (� ); (6.6)

	 0
p(� ) = diag 	 p(� );

for large � . If we perform the same calculations which results in (6.3).We obtain

@xx � 3(x; t; � ) = [ � � � u(x; t )]� 3(x; t; � ) + 2 @x � 3(x; t; � )H � 1(� )( 	 0
p(� )) � 1[g(� ) + r (� )]	 0

p(� )H (� )

� � 3(x; t; � )H � 1(� )( 	 0
p(� )) � 1[g(� ) + r (� )]2	 0

p(� )H (� ):
(6.7)

But 	 0
p is diagonal and commutes withg and h. Therefore, all 	 0

p dependence cancels out. We see that
(6.4) is invariant under multiplication by (	 p) � . Thus, the solution u(x; t ) to the KdV equation is extracted
from � 3 by (6.4). We summarize our results in the following theorem.

Theorem 6.1. If � 3(x; t; � ) is the solution of the deformed and regularized RHP associated with (	 r ) � and

� 3(x; t; � ) =
�

1 1
�

+ c1(x; t )� � 1 + O(� � 2); c1(x; t ) =
�

s1(x; t ) s2(x; t )
�

;

then the corresponding solution of the KdV equation is foundthrough

u(x; t ) = 2 i (s2(x; t ) � s1(x; t ) + 2 iE;

E = �
1

2�

gX

j =1

Z � j +1

� j

@x Wj (x; t ) � 2� 1=2

p
P(� )

+ � gd�;

where f Wj (x; t )g1
j =1 are de�ned by the moment conditions for (5.11) with � (� ) replaced with Z (x; t; � ).

This theorem states that despite the theoretical use of the function (	 p) � , the computation of the solution
to the KdV equation does not require the computation of (	 p) � .

7 Numerical computation

In this section we discuss the computation of all the components of the theory. These components are:

1. Evaluating contour integrals used in the Abel map and the moment problem.

2. Computing the singular integrals used in the representation of the g-function.

3. Solving the deformed and regularized RHP for the Baker{Akhiezer function.

4. Extracting the solution to the KdV equation from the Baker {Akhiezer function.

7.1 Computing contour integrals

The developments above require the computation of integrals of the form

I j (f ) =
Z � j +1

� j

f (� )
p

P(� )
+ d�; (7.1)

to determine the g-function and compute 
 j =Wj . Note that in the cases we considerf is analytic near the
contour of integration. Also, we compute the Abel map of divisors whose points lie in gaps. We always
chooseQ0 = ( � 1; 0) in (2.1) and integrate along � + across the bands and gaps. Thus computing the Abel
map of a point in a gap requires computation of integrals of the form (7.1) along with integrals of the form

K j (f ) =
Z � j

� j

f (� )
p

P(� )
+ d�;

I j (f; � ) =
Z �

� j

f (s)
p

P(s)
+ ds:

(7.2)
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While numerical integration packages can handle such integrals, it is bene�cial to use Chebyshev poly-
nomials. For example, de�ne

s = m(� ) =
2

� j � � j
� �

� j + � j

� j � � j
:

We change (7.1) to

I j (f ) =
Z 1

� 1

f (m� 1(s))
p

P(m� 1(s))
+ dm� 1(s):

The function

w(s) =

p
1 � s2

p
P(m� 1(s))

;

is analytic in a neighborhood of the interval [� 1; 1]. We write

I j (f ) =
Z 1

� 1

 
f (m� 1(s))

p
P(m� 1(s))

+ w(s)
d
ds

m� 1(s)

!
ds

p
1 � s2

:

The Chebyshev series approximation of the function in parenthesis converge exponentially since it is analytic
in a neighborhood of [� 1; 1]. A discrete cosine transform is used to approximate the series and the �rst
coe�cient in the series gives a very good approximation toI j (f ). Similar ideas work for K j (f ) but we must
modify our approach for I j (f; � ). Consider the integral

Fn (� ) =
Z �

� 1
Tn (x)

dx
p

1 � x2
; � 2 (1; 1):

Here Tn denotes the nth-order Chebyshev polynomial of the second kind. Using thestandard change of
variables x = cos � ,

Fn (� ) = �
Z arccos �

�
Tn (cos� )d� = �

Z arccos �

�
cos(n� )d�:

Therefore

Fn (� ) =
�

� sin( n arccos � )
n if n > 0;

� � arccos� if n = 0 :

Using the change of variablesm(� ) and the discrete cosine transform we can compute eachI j (f; � ) with this
formula.

Weneed to computeb periods. The b cycles have a more complicated relationship. Consider the cycles
~bj in Figure 8. We compute

I

~bj

w = 2
Z � j

� j

f (� )d�:

From Figure 8, we see thatb1 = ~b1 and bi = ~bi + bi � 1. This gives a recursion relationship forb cycles.
We must know ! k before computing the Abel map. We describe how to compute thenormalized di�er-

entials. Let ! = f (� )d� be a holomorphic di�erential, we showed in the proof of Theorem 5.1 that
I

a j

w = � 2
Z � j +1

� j

f (� )d�:
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! !

!! !
!! !

!! !!! !

Figure 8: The cycles~bj on a schematic of the Riemann surface.

Given the branch point � j ; � j , j = 1 ; : : : ; g+1 where � g+1 = 1 we use the basis of unnormalized di�erentials

un =
� n � 1

�
d�; n = 1 ; : : : ; g;

and compute their a and b-periods. This allows us to construct the basis! k of normalized di�erentials and
gives us access to the Abel map.

AssumeQ = ( �; �
p

P(� )
+

) 2 aj for � = � 1. Then the kth component of the Abel map is computed by

(A(Q)) k =
j � 1X

l =1

(I l (f k ) + K l (f k )) + K l (f k ) + �I j (f k ; � );

where f k (� )=w is the principal part of ! k , the kth normalized holomorphic di�erential.

7.2 Computing the g-function

The g-function is de�ned by

G(x; t; � ) =

p
P(� )
2�i

gX

j =1

Z � j +1

� j

� � (x; t; s ) + i 
 j (x; t )
p

P(s)
+

ds
s � �

; (7.3)

see (5.1). After mapping each interval of integration in (7.3) using a linear change of variablesz = mj (s)
(mj : [� j ; � j +1 ] ! [� 1; 1]) we have the expression

G(x; t; � ) =

p
P(� )
2�i

gX

j =1

Z 1

� 1
H j (z)

dz
z � mj (� )

;

where

H j (z) =
� � (x; t; m � 1

j (z)) + i 
 j (x; t )
q

P(m� 1
j (z))

+ :

Note that Fj (z) = H j (z)
p

1 � z2 is analytic in a neighborhood of [� 1; 1]. We use

G(x; t; � ) =

p
P(� )
2�i

gX

j =1

Z 1

� 1

Fj (z)
z � mj (� )

dz
p

1 � z2
;

This reduces the problem of computing theg-function to that of computing integrals of the form

C(� ) =
1

2�i

Z 1

� 1

f (s)
(s � � )

1
p

1 � s2
ds; � 62[� 1; 1];
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wheref is a smooth function on [� 1; 1]. We use the known expansion of the function 1=(s� � ) in a Chebyshev
series [23]

1
s � �

=
1X

j =0

ej (� )Tj (s); ej (� ) =

8
><

>:

� 1p
� 2 � 1

if j = 0 ;

� 2( � �
p

� 2 � 1) j
p

� 2 � 1
otherwise:

Here Tj is the j th Chebyshev polynomial of the second kind [23]. This formula is technically valid for � > 1
but can be extended toCn[� 1; 1] by analytic continuation. We use a discrete cosine transformation of order
n to approximate the Chebyshev series off :

f (s) �
nX

j =0

cj Tj (s):

Orthogonality gives

C(� ) �
1

2�i

0

@�c 0e0(� ) +
�
2

nX

j =0

cj ej (� )

1

A :

Exponential convergence is guaranteed since in our casef is analytic.
Alhough it is not important for our purposes, one may wish to compute the limiting values G� as �

approaches a gap from above or below. We use the formula [19]

lim
� ! 0+

1
2�i

Z 1

� 1

Tj (s)
s � (� � i� )

ds
p

1 � s2
=

1
2

Tj (� ) �
1
2i

Uj � 1(� ); � 2 (� 1; 1);

where Uk is the Chebyshev polynomial of the �rst kind [23].

7.3 Computing the Baker-Akhiezer function

This section is concerned with computing (	 r ) � . Let D 0 be the divisor for the desired zeros of the BA
function and D be the divisor for the poles. We compute the vector (see (5.5))

V = A(D 0 � D );

using the method for computing integrals described above. Next, consider the di�erentials

� j = i
� g+ j � 1

�
d�; j = 1 ; : : : ; g;

which satisfy

Z �

� 0

� j = O(� � 1=2+ j ); as � ! 1 :

We accurately compute thea-periods of � j . We construct f ~� j gg
j =1 which each have vanishinga periods by

adding an appropriate linear combination holomorphic di�erentials. We compute the matrix

Skj =
I

bk

~� j :

The system SX = V is solved for the real-valued vectorX , giving a di�erential

l =
gX

j =1

X j ~x j ;
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that has bperiods equal to the vectorV . The �nal step is to compute the coe�cients f t j gg
j =1 in the expansion

Z �

� 0

l =
gX

n =1

it n � n � 1=2 + O(� � 1=2) = � (� )=2 + O(� � 1=2):

The BA function with asymptotic behavior (	 p) � � e� � ( � )=2 as � ! 1 has zeros at the points ofD 0.
Theorem 6.1 tells us to seek (	r ) � � e� Z (x;t;� )=2 as � ! 1 . We construct the deformed and regularized
RHP for (	 r ) � , see Section 6. This RHP is solved numerically.

To test the method we use� 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 1 :5 and � 3 = 2. Thus we have a genus two
surface. We choose zeros to be at the points (:5;

p
P(:5)

+
) and (1:75;

p
P(1:75)

+
). To approximate the BA

function we use n collocation points per contour. See Appendix B for a more thorough discussion of the
numerical method for RHPs that is used and its convergence properties. The roots of the approximate BA
function are found using standard Chebyshev root-�nding techniques [3]. In Figure 9 we plot the absolute
error of the roots asn increases. Spectral convergence of the roots is observed. See Figure 10 for a surface
plot showing both the zeros and the poles of the BA function ona single sheet. See Figures 11 and 12 for
contour plots of the real part, imaginary part, and modulus of the BA function on each sheet. Note that
producing this plot requires the computation of the g-function. These plots are all produced in the genus
two case but higher genus BA functions can also be plotted.

! "! #! $! %!

"! ! ""

"! ! &

"! ! '

"! ! (

!)!!"

!)"

*

+
,,-

,

Figure 9: A demonstration of the spectral convergence of thezeros of the BA function.

!! ! !

!" !

!" !

Figure 10: A three-dimensional plot of the modulus of the BA function on one sheet of the Riemann surface.
We see two poles and two zeros are clearly present.

7.4 Numerical solutions of the KdV equation

Before we move to numerical results for the KdV equation, letus review the solution process. The constants
� j (j = 1 ; : : : ; g + 1) and � j (j = 1 ; : : : ; g) are chosen, all positive. This determines the polynomialP(� )
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!" !

!" !

(a)

!" !

!" !

(b)

!" !

!" !

(c)

Figure 11: A genus-two Baker{Akhiezer function. Darker shades indicate smaller values. Two poles and two
zeros are clearly present. (a) The real part of 	+ . (b) The imaginary part of 	 + . (c) The modulus of 	 + .

!" !

!" !

(a)

!" !

!" !

(b)

!" !

!" !

(c)

Figure 12: A genus-two Baker{Akhiezer function. Darker shades indicate smaller values. (a) The real part
of 	 � . (b) The imaginary part of 	 � . (c) The modulus of 	 � .
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and the unnormalized di�erentials uk . The a periods of these di�erentials are computed using Chebyshev
polynomials and the normalized basis! k is constructed. Next, one point in eacha-cycle is chosen to be a
pole of the BA function. These points make up the divisor for the poles of the BA function. The Abel map
of this divisor is computed, along with the Abel map of the divisor

D =
gX

j =1

(� j ; 0):

Through the process just outlined the constants t j , j = 1 ; : : : ; g are computed. The Riemann{Hilbert
formulation is used to compute the function (	 r ) � by noting that its asymptotic behavior is (6.5). The
function � 3 is found and u(x; t ) is computed using Theorem 6.1.

In this section we plot numerical solutions of the KdV equation. In the genus two case we use numerical
tests to demonstrate uniform spectral convergence.

7.4.1 Genus one

For a genus one solution we set� 1 = 0 ; � 1 = :25 and� 2 = 1 with the zero of the BA function at ( :5;
p

P(:5)
+

)
at t = 0. See Figure 13 for plots of the corresponding solution of the KdV equation. This solution is an
elliptic function. Explicitly, [5],

u(x; t ) = � � 2 � � 1 + 2 cn2(x � K (1 � � 1) + 1 :0768� (8(1 � � )2 � 4 � � 2 � � 1)t; 1 � � 1);

where K (k) is the complete elliptic integral and cn is the Jacobi cn function [19]. The shift inside the cn
function is computed numerically. See Figure 13 for anothersolution.

7.4.2 Genus two

For a genus two solution we set� 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 1 :5 and � 3 = 2 with the zeros of the BA
function at ( :5;

p
P(:5)

+
) and (1:75;

p
P(1:75)

+
) at t = 0. See Figure 15 for plots of the corresponding

solution of the KdV equation.
For this solution we numerically discuss convergence. We use un (x; t ) to denote the approximate solution

of the KdV equation obtained with n collocation points per contour of the RHP. We de�ne the Cauchy error

En;m (x; t ) = jun (x; t ) � um (x; t )j:

We �x m = 80 and let n vary: n = 10; 20; 40. See Figure 14 for plots ofEn;m (x; t ) for various values of x
and t. This �gure demonstrates uniform spectral Cauchy convergence of the function un (x; t ) to u(x; t ), the
solution of the KdV equation.

We plot another genus two solution in Figure 15. If we shrink the widths of the bands we can obtain
solutions which are closer to the soliton limit. See Figure 16 for a solution demonstrating a soliton-like
interaction.

7.4.3 Genus three

For a genus three solution we set� 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 = 3 and � 4 = 3 :5 with the
zeros of the BA function at (:5;

p
P(:5)

+
), (1:75;

p
P(1:75)

+
) and (2:75;

p
P(2:75)

+
) at t = 0. In Figure 17

we show the jump contours for the RHP which are used in practice to compute the BA function. See Figure
19 for plots of the corresponding solution of the KdV equation and Figure 18 and Figure 19 for another
genus three solution. We show the dynamics of the zeros of theBA function in Figure 18.

7.4.4 Genus �ve

Just to demonstrate the breadth of the method we compute a genus �ve solution. We set � 1 = 0 ; � 1 =
:25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 = 3 ; � 4 = 3 :3; � 4 = 3 :5; � 5 = 4 ; � 5 = 5 :1 and � 6 = 6 with the zeros of the
BA function at ( :5;

p
P(:5)

+
), (2:2;

p
P(2; 2)

+
), (3:2;

p
P(3:2)

+
), (3:6;

p
P(3:6)

+
) and (5:3;

p
P(5:3)

+
) at

t = 0. See Figure 20 for a plot of the corresponding solution of the KdV equation. This �gure shows the
time evolution.
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(a) (b)

(c) (d)

Figure 13: (a) A contour plot of the genus one solution with � 1 = 0 ; � 1 = :64 and � 2 = 1 with the zero of

the BA function at ( :75;
p

P(:75)
+

) at t = 0. Darker shades represent troughs. (b) A contour plot of the

genus one solution with� 1 = 0 ; � 1 = :64 and � 2 = 1 with the zero of the BA function at ( :75;
p

P(:75)
+

)
at t = 0. Again, darker shades represent toughs. (c) A three-dimensional plot of the solution in (a) showing
the time evolution. (d) A three-dimensional plot of the solution in (b) showing the time evolution.
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(b)

Figure 14: (a) A logarithmically scaled plot of En; 80(x; 0) for n = 10 (dotted), n = 20 (dashed) and n = 40
(solid). (b) A logarithmically scaled plot of En; 80(x; 25) for n = 10 (dotted), n = 20 (dashed) and n = 40
(solid). This �gure demonstrates uniform spectral convergence.

8 Conclusions

We have constructed a method to characterize all Baker{Akhiezer functions which arise from �nite-genus
solutions of the KdV equation in terms of a classical Riemann{Hilbert problem with smooth solutions.
The computational cost to compute the solution to the KdV equation to desired accuracy is seen to be
independent ofx and t.
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A Analysis of the deformed and regularized RHP

In general we consider a RHP form

� + (� ) = � � (� )G(� ); � 2 � ; �( 1 ) = I; (A.1)

where � is bounded and G depends onf 
 j (x; t )gg
j =1 , or alternatively f Wj (x; t )gg

j =1 . We follow [25, 26] (see
also [21]). We start with a few de�nitions. Given a self-intersecting piecewise smooth, oriented and bounded
contour � � C de�ne  0 to be the set of self intersections. De�ne the Cauchy integral of a function de�ned
on �

C� f (� ) =
1

2�i

Z

�

f (s)
s � �

ds; � 62� :

For � 62 0 we de�ne

C�
� f (� ) = lim

� ! 0�

1
2�i

Z

�

f (s)
s � (� � �� (� ))

ds;

where � is the positive unit normal to �. It is well known that this lim it exists for almost every � and the
corresponding operators are bounded fromL 2(�) to itself [6, 16]. A matrix-valued function G : � ! C2� 2

is said to be in H k (�) if it is an H k function when restricted to each non-self-intersecting component of �.
Here H k refers to the k-order L 2-based Sobolev space, see [1, 21].
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(a) (b)

(c) (d)

Figure 15: (a) A contour plot of the genus two solution with � 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 1 :5 and � 3 = 2

with the zeros of the BA function at ( :5;
p

P(:5)
+

) and (1:75;
p

P(1:75)
+

) at t = 0. Darker shades represent
troughs. (b) A contour plot of the genus two solution with � 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 and � 3 = 2 :25

with the zeros of the BA function at ( :5;
p

P(:5)
+

) and (2:2;
p

P(2:2)
+

) at t = 0. Again, darker shades
represent toughs. (c) A three-dimensional plot of the solution in (a) showing the time evolution. (d) A
three-dimensional plot of the solution in (b) showing the time evolution.
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Figure 16: A genus two solution with � 1 = 0 ; � 1 = 0 :1; � 2 = 1 ; � 2 = 1 :05 and � 3 = 1 :75 with the zeros of
the BA function at ( :5;

p
P(:5)

+
) and (1:2;

p
P(1:2)

+
) at t = 0. This solution demonstrates a soliton-like

interaction.

De�nition A.1. Assume � 0 2  0 and G 2 H k (�) . Let � 1; : : : ; � m be a counter-clockwise ordering of
subcomponents of� which contain � = � 0 as an endpoint. We de�ne Ĝi by Gj ~� i

if � i is oriented outwards
and (Gj � i )

� 1 otherwise. We sayG satis�es the (k � 1)th-order product condition if using the (k � 1)th-order
Taylor expansion we have

mY

i =1

Ĝi = I + O
�
(� � � 0)k �

; for j = 1 ; : : : ; k � 1; 8� 0 2  0: (A.2)

De�nition A.2. Assume that � 0 2  0 and let � 1; : : : ; � m be a counter-clockwise ordering of subcomponents
of � which contain � = � 0 as an endpoint. For f 2 H k (�) , de�ne

f ( j )
l =

(
� lim � ! � 0

�
d

d�

� j
f j � l (� ) if � l is oriented outward,

lim z! � 0

�
d

d�

� j
f j � l (� ) if � l is oriented inward.

(A.3)

We say that f satis�es the (k � 1)th-order zero-sum condition if

mX

l =1

f ( j )
l = 0 ; for j = 0 ; : : : ; k � 1 and 8� 0 2  0: (A.4)

We use the notationH k
z (�) to denote the closed subspace ofH k (�) consisting of functions that satisfy the

(k � 1)th-order zero-sum condition.

A contour is said to be complete ifCn� = 
 + [ 
 � where 
 + \ 
 � = ? and 
 � lies to the left (right) of
�. A contour can always be augmented to a complete contour andmatrix-valued functions can be extended
to be the identity on these added contours.

Proposition A.1. [26] Let � be a complete contour andG 2 H k (�) . Assume thatG satis�es the (k � 1)th-
order product condition. Then G has an algebraic factorization

G = G� 1
� G+ ;

such that G� 2 H k
z (@
 � ).
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Figure 17: The jump contours for the RHP which are used in practice to compute the BA function. Here
� 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 = 3 and � 4 = 3 :5.

This results in the following theorem.

Theorem A.1. [26] The operator I � CG � de�ned by

(I � CG � )u = C+
� [u(I � G� )] � C �

� [u(I � G+ )]

is Fredholm on H k
z (@
 + ) \ H k

z (@
 � ) and has Fredholm index

ind( I � CG � ) = �
1
�i

� Z

�
d log detG+ �

Z

�
d log detG�

�
:

Furthermore, � = I + C� [� (G+ � G� )], � : � ! C2� 2, is a solution of the RHP

� + = � � G; on � ; �( 1 ) = I;

if � is a solution of (I � CG� )� = I .

If we partition � = � 1 [ � � � [ � m into its non-self-intersecting smooth components we obtain

ind( I � CG � ) = � 2
mX

l =1

� Z

� l

d log detG+ �
Z

� l

d log detG�

�

= � 2
mX

l =1

Z

� l

d log
det G+

det G�
= � 2

mX

l =1

Z

� l

d log detG:

We apply this result to the RHP derived in Section 6. We useG to denote the jump matrix. We note
that when we augment the contour, G = I on all added pieces and these do not contribute to the integral.
Also, det � = 1 away from � j , � j and detJ 0 = � 1. Both of these do not inuence the index. We are left
with

ind( I � CG � ) = �
1
�i

gX

l =1

 Z

C � l

d log detA l (� ) +
Z

c� l

d log detB l (� )

!

�
1
�i

Z

@D
d log detH (� ) �

1
�i

Z

C � g +1

d log detA g+1 (� ):
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Figure 18: A genus three solution with � 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 = 3 and � 4 = 3 :5 with
the zeros of the BA function at (:5;

p
P(:5)

+
); (2:2;

p
P(2:2)

+
) and (3:2;

p
P(3:2)

+
) at t = 0. These plots

show the dynamics of the zeros of the BA function. The top plot in each panel gives a schematic of the
Riemann surface with thea cycles labeled. Dots of the same shade across the panels are in correspondence.
The + on the plots represents where the pole of the BA functionis located on the Riemann surface. These
points are also the locations of the zeros att = 0. (a) The solution at t = 0. We vary x from x = 0 up to
x = 0 :25 and plot how the zerosf  1(x; 0);  2(x; 0);  3(x; 0)g move on the Riemann surface. (b) The evolution
of the same solution up tot = 0 :125. We �x x = 0 and plot how the zeros f  1(0; t);  2(0; t);  3(0; t)g move
on the Riemann surface.
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(a) (b)

(c) (d)

Figure 19: (a) A contour plot of the genus three solution with � 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 =

3 and � 4 = 3 :5 with the zeros of the BA function at ( :5;
p

P(:5)
+

); (2:2;
p

P(2:2)
+

) and (3:2;
p

P(3:2)
+

)
at t = 0. Darker shades represent troughs. (b) A contour plot of the genus three solution in Figure 18.
Again, darker shades represent toughs. (c) A three-dimensional plot of the solution in (a) showing the time
evolution. (d) A three-dimensional plot of the solution in F igure 18 showing the time evolution.
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(a)

(b)

Figure 20: (a) A contour plot of the genus �ve solution with � 1 = 0 ; � 1 = :25; � 2 = 1 ; � 2 = 2 ; � 3 = 2 :5; � 3 =

3; � 4 = 3 :3; � 4 = 3 :5; � 5 = 4 ; � 5 = 5 :1 and � 6 = 6 with the zeros of the BA function at ( :5;
p

P(:5)
+

),

(2:2;
p

P(2; 2)
+

), (3:2;
p

P(3:2)
+

), (3:6;
p

P(3:6)
+

) and (5:3;
p

P(5:3)
+

) at t = 0. Darker shades represent
troughs. (b) A three-dimensional plot of the solution same solution showing the time evolution.

33



Here C� j ; C� j are the circles around� j ; � j , and D is again the region inside the large outer circle but outside
each of the smaller circles, as before. Straightforward contour integration produces

Z

C � l

d log detA l (� ) = �i;

Z

C � l

d log detB l (� ) = � �i;

Z

@D
d log detH (� ) = � �i:

This proves that ind( I � CG � ) = 0. Every element in the kernel of I � CG� corresponds to a solution of
the RHP that vanishes at in�nity [26]. Given a matrix-valued solution �, we sum the rows to get the vector
representation of the BA function. If we have a vanishing solution we zero out the second row and assume
the �rst is non zero. Call the new function 	. This is still a va nishing solution. Then � + c	 is a solution
of the RHP for any c. Summing the rows of � + c	 we obtain a function di�erent from � for every c. This
contradicts the uniqueness of the BA function gives thatI � CG � must be boundedly invertible by the open
mapping theorem. This shows that all RHPs considered here are uniquely solvable with smooth solutions.
This is the justi�cation needed to use the numerical method for RHPs in [20].

B Numerical details and uniform approximation

We consider the RHP (A.1). We useC to denote a generic constant. In this section we explain how our
approximation of the BA function changes with x and t. We use the results from [21]. For numerical purposes
we consider the operatorC[G; �] de�ned by

C[G; �] U = U � (C�
� U)(G � I ): (B.1)

The operator equation

C[G; �] U =
�

1 1
�

(G � I );

is discretized using the method in [20]. We useCn [G; �] to denote this discretization. Once an approximation
Un to U is known, an approximate solution � n (� ) = C� Un (� ) +

�
1 1

�
of � is obtained. The method

considered is a collocation method and �n will satisfy the RHP exactly at each collocation point. The residue
of a function at 1 is computed through

lim
� !1

� (�( � ) �
�

1 1
�
) = �

1
2�i

Z

�
U(s)ds:

This is what is used to computes1 and s2 in (6.4). We make a fundamental assumption.

Assumption B.1. For the problems we consider the following holds:

kCn [G; �] � 1kL (Yn ;X n ) � C(�) nl kC[G; �] � 1kL (L 2 (�)) ; l � 0;

where X n and Yn are spaces of mapped Chebyshev polynomials with theL 2 norm [21].

We establish two claims:

� kC[G; �] � 1kL (L 2 (�)) < C and

� k G � I kW k; 1 (�) < D k for eachk > 0 for constants D k .

Here W k; 1 (�) is the kth-order L 1 -based Sobolev space [1, 21].
The operator I � CG � depends ong constants 
 j 2 [0; 2� ); j = 1 ; : : : ; g in an analytic way. In the

notation of Section A. It follows that the mapping


 = (
 1; : : : ; 
 j ) 7! I � CG � ;
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is continuous from [0; 2� )g to L (H k (@
 + ) \ H k (@
 � )). Since the operator is always invertible the same
statement holds for the inverse operator. This implies

sup



kI � CG � kL (H k (@
 + ) \ H k (@
 � )) < C:

It is important to note that the operator in (B.1) is di�erent from I � CG � . While a solution of one can be
mapped to a solution of the other, the operator norms do not share a clear relationship. What we do know
is that the solution � of the RHP will satisfy a similar bound:

sup



k� � kH k (@
 + ) \ H k (@
 � ) < C: (B.2)

Once the unique solution of the RHP is known the inverse of theoperator in (B.1) can be written down [21]:

C[G; �] � 1U = C+
� [U� + ][� � 1]+ � C �

� [U� + ][� � 1]� : (B.3)

The uniform boundedness of �� in H 1(@
 + ) \ H 1(@
 � ) implies the uniform boundedness of (B.3) as an
operator on L 2(�). This establishes the �rst claim.

The second claim can be established by di�erentiating the jump matrix G. It is clear that all derivatives
of G are bounded and this bound can be made independent of
 . This leads to the following theorem which
shows we expect uniform spectral convergence of all needed functions.

Theorem B.1. If Assumption B.1 holds then � n , the approximate numerical solution of � , satis�es

sup



j� n (� ) � �( � )j < C � � � 1n� � ; for every � � 0; inf
s2 �

j� � sj > �;

sup



kUn � UkL 2 (�) < L � n� � ; for every � � 0:

As a consequence, the approximate solutionun (x; t ) of the KdV equation satis�es

sup



jun (x; t ) � u(x; t )j < S � n� � ; for every � � 0:
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