MATH 120A SAMPLE MIDTERM EXAM

FALL 2014

Student name:

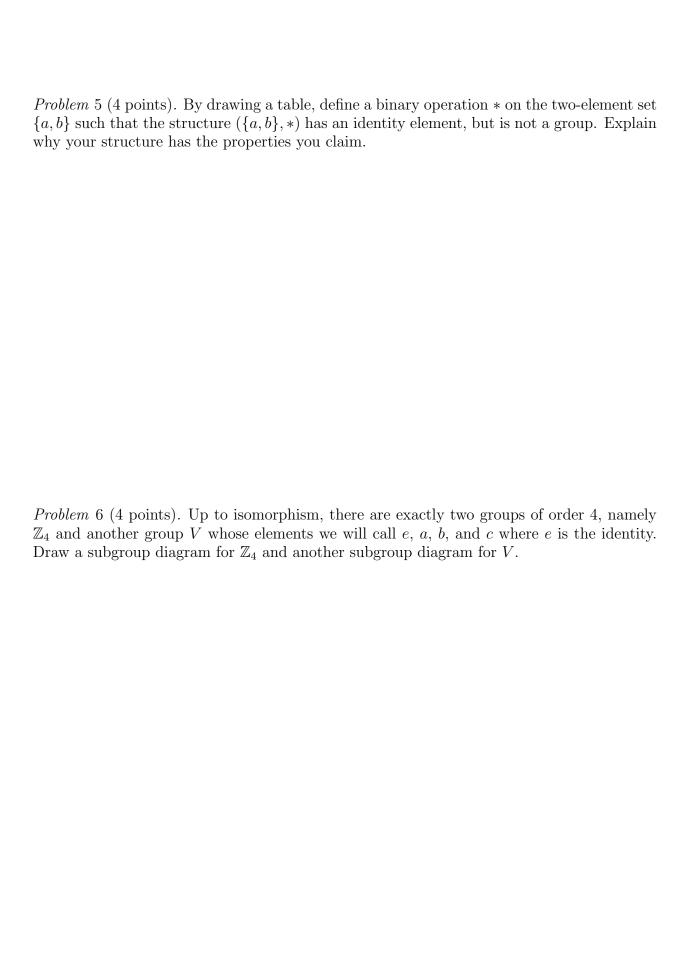
Student ID number:

Instructions

- Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
- Cheating in any form may result in an F grade for the course as well as administrative sanctions.
- The time remaining will be written on the board periodically.
- When time is called, you must stop working immediately.
- If you want to leave your seat for any reason before time is called, raise your hand and remain seated until acknowledged.

1	/	10
2	/	4
3	/	4
4	/	4
5	/	4
6	/	4
Total	/	30

 $Problem\ 1\ (10\ points).$ Mark each statement 'T' for true or 'F' for false. You do NOT need to justify your answers.


- T F Any two groups of order 4 are isomorphic.
- T F For every $n \in \mathbb{Z}^+$ there is an element of order n in the group $(\mathbb{Z}, +)$.
- T F Multiplication is an associative operation on the set of all 2×2 real matrices.
- T F The group $(\mathbb{Z}, +)$ is isomorphic to one of its proper subgroups.
- T F The relation $\{(a, x), (a, y)\}$ is a function from the set $\{a, b\}$ to the set $\{x, y, z\}$.
- T F Multiplication (meaning composition) is a commutative operation on the set of all permutations of $\{1, 2, 3\}$.
- T F Up to isomorphism, there is only one infinite abelian group.
- T F If G and H are isomorphic groups and every element of G has order 2, then every element of H must have order 2 also.
- T F Every abelian group is cyclic.
- T F The group $(\mathbb{Z}_7, +_7)$ has an element of order 6.

Problem 2 (4 points). Let G be a group and let $a \in G$.

(a) Define the order of a.

(b) Define what it means for a to be a generator of G.

