MATH 120A MIDTERM EXAM (WHITE PAPER)

WINTER 2015

Student name:			
Student ID number:			

Instructions

- Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
- Cheating in any form may result in an F grade for the course as well as administrative sanctions.
- When time is called, you must stop working immediately, close your exam, and remain seated until your exam is collected.
- If you want to leave your seat for any reason before time is called, raise your hand and remain seated until acknowledged.

1	/	10
2	/	4
3	/	4
4	/	4
5	/	4
6	/	4
Total	/	30

Problem 1 (10 points). Mark each statement 'T' for true (meaning always true) or 'F' for false (meaning sometimes false). You do NOT need to justify your answers to this problem.

- T F If every element of the group G_1 is its own inverse, and G_2 is isomorphic to G_1 , then every element of G_2 is its own inverse.
- T F The set of all positive rational numbers forms a group under multiplication.
- T F The set of all 2×2 real matrices of positive determinant is closed under matrix multiplication.
- T F The binary structure (S, \max) has an identity element, where $S = \{x \in \mathbb{R} : 0 < x < 1\}$.
- T F The group (\mathbb{R}^*, \cdot) of nonzero real numbers under multiplication is isomorphic to the group (\mathbb{R}^+, \cdot) of positive real numbers under multiplication.
- T F A binary operation on a set S is a function from $S \times S$ to $S \times S$.
- T F There is a bijection from \mathbb{N} to \mathbb{Q} .
- T F If H is a proper subgroup of G, then |H| < |G|.
- T F Some element of the group $(\mathbb{Z}_{12}, +_{12})$ has order 4.
- T F Every abelian group is cyclic.

Problem 2 (4 points). Define the italicized terms:

(a) What does it mean for a binary operation * on a set S to be *commutative*?

(b) What does it mean for a binary operation * on a set S to be associative?

Problem 3 (4 points). Let (G, +) be an abelian group and define a function $\phi : G \to G$ by $\phi(a) = -a$. Prove that ϕ is an isomorphism from (G, +) to (G, +).

Problem 4 (4 points). Consider the group

$$G = \{a \in \mathbb{Q} : a = 2^n \text{ or } a = -(2^n) \text{ for some } n \in \mathbb{Z}\},$$

with the operation of multiplication. (You may assume that this is a group.) Prove that G is not cyclic.

 Problem 5 (4 points). For each part, make sure to justify your answer: (a) Give an example of a subset of R that is closed under addition, but not closed under multiplication.
(b) Give an example of a subset of $\mathbb R$ that is closed under multiplication, but not closed under addition.
Problem 6 (4 points). Let G be the group $\{1,3,7,9\}$ with the operation \cdot_{10} of multiplication modulo 10. (You may assume this is a group.) (a) List all of the subgroups of G . How do you know that your list is complete?
(b) Draw the subgroup diagram of G .