MATH 120A MIDTERM EXAM (YELLOW PAPER)

WINTER 2015

Student name:		
Student ID number:		

Instructions

- Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
- Cheating in any form may result in an F grade for the course as well as administrative sanctions.
- When time is called, you must stop working immediately, close your exam, and remain seated until your exam is collected.
- If you want to leave your seat for any reason before time is called, raise your hand and remain seated until acknowledged.

1	/	10
2	/	4
3	/	4
4	/	4
5	/	4
6	/	4
Total	/	30

Problem 1 (10 points). Mark each statement 'T' for true (meaning always true) or 'F' for false (meaning sometimes false). You do NOT need to justify your answers to this problem.

- T F If G is a group whose operation is associative, then G is called an abelian group.
- T F Let (S,*) be a binary structure and let $A, B \subseteq S$. If A and B are closed under *, then their union $A \cup B$ is closed under *.
- T F The set of all nonzero 3×3 matrices with real entries forms a group under the operation of matrix multiplication.
- T F The group (\mathbb{C}^*, \cdot) of nonzero complex numbers under multiplication has a subgroup that is isomorphic to \mathbb{Z}_4 .
- T F If a group G has an element of order 2, then it also has a subgroup of order 2.
- T F Any two groups of order 2 are isomorphic to each other.
- T F Being abelian is a structural property of groups.
- T F Let G be a group and $a, b, c \in G$. If aba = aca, then b = c.
- T F Every cyclic group is abelian.
- T F There is a bijection from \mathbb{R} to \mathbb{Q} .

Problem 2 (4 points). Define the italicized terms:

(a) What is an *identity element* for a binary structure (S, *)?

(b) Assume that (S, *) has an identity element and let $a \in S$. What is an *inverse* of a in (S, *)?

Problem 3 (4 points). Let $n \in \mathbb{N}$ and recall that $GL_n(\mathbb{R})$ denotes the group of all invertible $n \times n$ matrices with real entries under the operation of matrix multiplication. Let $\vec{x} \in \mathbb{R}^n$ and define the set

$$H = \{ A \in GL_n(\mathbb{R}) : A\vec{x} = \vec{x} \},$$

where $A\vec{x}$ denotes the product of a matrix and a vector in the usual sense. Prove that H is a subgroup of $GL_n(\mathbb{R})$.

 $Problem\ 4$ (4 points). Let (S,*) denote an arbitrary binary structure. Prove that the property P saying

a*a=a for every $a\in S$

is a structural property.

Problem 5 (4 points). For each part, make sure to justify your answer: (a) Let \mathbb{R}^* denote the set of all nonzero real numbers.
Give an example of a nontrivial subgroup of (\mathbb{R}^*, \cdot) that is finite.
(b) Give an example of a proper subgroup of $(\mathbb{Q}, +)$ that is NOT cyclic.
(b) Give the chample of a proper subgroup of (g, i) that is 1.01 e, one.
<i>Problem</i> 6 (4 points). Consider the group \mathbb{Z}_{12} with the operation of addition modulo 12.
(a) List all of the subgroups of \mathbb{Z}_{12} . How do you know that your list is complete?
(b) Draw the subgroup diagram of \mathbb{Z}_{12} .