MATH 120B MIDTERM EXAM (YELLOW PAPER)

SPRING 2015

Student name:		
Student ID number:		

Instructions

- Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
- Cheating in any form may result in an F grade for the course as well as administrative sanctions.
- When time is called, you must stop working immediately, close your exam, and remain seated until your exam is collected.
- If you want to leave your seat for any reason before time is called, raise your hand and remain seated until acknowledged.

1	/	12
2	/	4
3	/	4
4	/	4
5	/	4
Total	/	28

Problem 1 (12 points). Mark each statement 'T' for true (meaning always true) or 'F' for false (meaning sometimes false). You do NOT need to justify your answers to this problem.

- T F There is a field of characteristic 4.
- T F If D is an integral domain, then there is a field F and an injective homomorphism from D to F.
- T F If p is a prime number and $a \in \mathbb{Z}$ is not divisible by p, then $a^{\varphi(p)} \equiv 1 \pmod{p}$.
- T F If D and D' are integral domains and $\phi: D \to D'$ is a nontrivial homomorphism, then $\phi(1_D) = 1_{D'}$.
- T F Let S be a set and let f be a function from S to S. If f is injective, then it is surjective.
- T F If $(F, +, \cdot)$ is a field and F^* is the set of nonzero elements of F, then (F^*, \cdot) is a group.
- T F There is a surjective homomorphism from \mathbb{Z} to \mathbb{Z}_6 .
- T F Let K be a field and let $f(x) \in K[x]$. If $f(\alpha) = 0$ for all $\alpha \in K$, then f(x) is the zero polynomial.
- T F If K is a field and $f(x), g(x) \in K[x]$ are nonzero then the degree of f(x)g(x) is deg $f(x) + \deg g(x)$.
- T F If D is an integral domain then the polynomial ring D[x] is an integral domain.
- T F Let K be a field and let $f(x) \in K[x]$ be nonzero. The number of roots of f(x) is equal to deg f(x).
- T F Every finite integral domain is a field.

Problem 2 (4 points). Give the requested definitions.

(a) What is a field?

(b) What is an *idempotent* element of a ring?

<i>Problem</i> 3 (4 points). Let R and R' be rings with unity 1 and 1' respectively, let $\phi: R \to R'$ be a homomorphism, and let $a \in R$.
(a) Prove that if $\phi(1) = 1'$ and a is a unit, then $\phi(a)$ is a unit.
(b) Give an example where $\phi(1) \neq 1'$ and a is a unit, but $\phi(a)$ is not a unit.
$Problem\ 4$ (4 points). Compute $2^{41}\ \mathrm{mod}\ 27$. Show your work. Say what theorems you are applying, if any.

Problem 5 (4 points). This problem asks you to verify one of the steps in the construction of a field of quotients.

Let D be an integral domain and let D^* denote the set of nonzero elements of D. Recall that the relation \sim on $D \times D^*$ defined by $(a,b) \sim (a',b') \iff ab' = ba'$ is an equivalence relation, and let $\frac{a}{b}$ denote the equivalence class of (a,b).

Define the set

$$F = \left\{ \frac{a}{b} : (a, b) \in D \times D^* \right\}.$$

(a) Prove that there is a (well-defined) operation \cdot on F given by $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

(b) Give at least one reason why this operation \cdot on F could not be defined if D had zero divisors.