Problem 1.

(a) For \(n = 1, 2, 3, \ldots \) define the interval \(A_n = [1/n, n] \). Rewrite the union of intervals \(\bigcup_{n \in \mathbb{N}} A_n \) as an interval. For this problem you do not need to prove that your answer is correct.

\((0, \infty) \).

(b) Give an example of sets \(A \) and \(B \) with the property that \(\mathcal{P}(A) - \mathcal{P}(B) \not\subseteq \mathcal{P}(A - B) \), and show that your sets have this property. (\(\mathcal{P} \) means “power set.”)

Take \(A = \{1, 2, 3, 4\} \) and \(B = \{1, 2\} \). Then the set \(\{1, 3\} \) is in \(\mathcal{P}(A) - \mathcal{P}(B) \) but not in \(\mathcal{P}(A - B) \).\(^1\)

(c) Make a truth table for the compound statement \((P \lor Q) \implies R \).

\begin{array}{cccc}
P & Q & R & (P \lor Q) \implies R \\
T & T & T & T \\
T & T & F & F \\
T & F & T & T \\
T & F & F & F \\
F & T & T & T \\
F & T & F & F \\
F & F & T & T \\
F & F & F & T \\
\end{array}

\(^1\)More generally, take any set \(A \) with at least two elements and let \(B \) be any nonempty proper subset of \(A \). Say \(x \in B \) and \(y \in A - B \). Then \(\{x, y\} \) is in \(\mathcal{P}(A) - \mathcal{P}(B) \) but not in \(\mathcal{P}(A - B) \).
Problem 2. For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

T ① (P \implies R) \lor (Q \implies R) logically implies (P \lor Q) \implies R.

① F For all a, b, c, d, if \{a, b\} = \{c, d\} and a = c, then b = d.

① F For all sets A, B, C, D, and U, if \{A, B, C, D\} is a partition of U, then so is \{A \cup B, C \cup D\}.

T ⑤ For all sets A and B, \((A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)\).

T ⑤ \forall x \in S, P(x) is logically equivalent to \forall x \in S, \sim P(x).

T ⑤ \emptyset \in \emptyset.

① F P \implies (\sim P \implies Q) is a tautology.

① F For all sets A and B, if \(A \cap B = A\) then \(A \subseteq B\).

① F \sim(P \lor Q) is logically equivalent to \(\sim P \land \sim Q\).
Problem 3. Let \(x, y, z \in \mathbb{Z} \). Prove that the following sum of absolute values is even: \(|x - y| + |y - z| + |z - x|\).

Proof. Without loss of generality we may assume \(x \geq y \geq z \). Then \(x - y \geq 0, \ y - z \geq 0, \) and \(z - x \leq 0, \) so
\[
|x - y| + |y - z| + |z - x| = (x - y) + (y - z) + (- (z - x)) = 2(x - z),
\]
which is even. \(\square\)

Alternative proof. We consider four cases.

- Case 1: \(x, y, \) and \(z \) are all even. Then \(|x - y|, |y - z|, \) and \(|z - x| \) are all even, so their sum is even.
- Case 2: Exactly two of \(x, y, \) and \(z \) are even. Without loss of generality we may assume that \(x \) and \(y \) are even and that \(z \) is odd. Then \(|x - y| \) is even, and \(|y - z| \) and \(|z - x| \) are odd. So their sum is even.
- Case 3: Exactly one of \(x, y, \) and \(z \) is even. Without loss of generality we may assume that \(x \) is even and that \(y \) and \(z \) are odd. Then \(|x - y| \) and \(|z - x| \) are odd and \(|y - z| \) is even. So their sum is even.
- Case 4: \(x, y, \) and \(z \) are all odd. Then \(|x - y|, |y - z|, \) and \(|z - x| \) are all even, so their sum is even.

In each case, \(|x - y| + |y - z| + |z - x| \) is even. \(\square\)

Problem 4. Let \(x \in \mathbb{Z} \). Prove that if \(3 \nmid (x^2 + 2) \), then \(3 \mid x \).

Proof. We prove the contrapositive. Assume that \(3 \nmid x \). There are two cases to consider.

- Case 1: \(x \equiv 1 \pmod{3} \). Then \(x^2 \equiv 1^2 \equiv 1 \pmod{3} \), so \(x^2 + 2 \equiv 1 + 2 \equiv 0 \pmod{3} \).
- Case 2: \(x \equiv 2 \pmod{3} \). Then \(x^2 \equiv 2^2 \equiv 1 \pmod{3} \), so \(x^2 + 2 \equiv 1 + 2 \equiv 0 \pmod{3} \).

In each case we have \(x^2 + 2 \equiv 0 \pmod{3} \), meaning that \(3 \mid (x^2 + 2) \) as desired. \(\square\)
Problem 5. PROVE or DISPROVE the following statement:

For all sets A, B, and C,

$$(A \subseteq C \lor B \subseteq C) \iff (A \cap B \subseteq C).$$

Solution. We disprove the statement.

Let $A = \{1\}$, $B = \{2\}$, and $C = \emptyset$. Then $A \cap B = \emptyset \subseteq C$, but $A \not\subseteq C$ and $B \not\subseteq C$.

Problem 6. PROVE or DISPROVE the following statement:

There are $a, b \in \mathbb{Z}$ such that

$$a^2 - b^2 = 2.$$

Solution. We disprove the statement.

Let $a, b \in \mathbb{Z}$. Without loss of generality we may assume that $a, b \geq 0$ (because a^2 and b^2 do not depend on the signs of a and b.)

- Case 1: $a \leq b$. Then $a^2 - b^2 \leq 0$, so $a^2 - b^2 \neq 2$.
- Case 2: $a = b + 1$. Then $a^2 - b^2 = (b + 1)^2 - b^2 = 2b + 1$, which cannot be equal to 2.
- Case 3: $a \geq b + 2$. Then $a^2 - b^2 = (b + 2)^2 - b^2 = 4b + 4$, which is greater than 2.

In each case we have $a^2 - b^2 \neq 2$.

Solution (Alternative 1). We disprove the statement.

Let $a, b \in \mathbb{Z}$. We have $a^2 - b^2 = (a + b)(a - b)$. Assume to the contrary that this is equal to 2. The only ways to factor 2 are as $1 \cdot 2$, $2 \cdot 1$, $-1 \cdot -2$, and $-2 \cdot -1$. So 2 can only be factored as a product of consecutive integers. But $a + b$ and $a - b$ differ by $2b$, an even number, so they are not consecutive and we have a contradiction.

Solution (Alternative 2). We disprove the statement.

Let $a, b \in \mathbb{Z}$. We consider three cases.

- Case 1: a and b are both even, say $a = 2k$ and $b = 2l$ where $k, l \in \mathbb{Z}$. Then $a^2 - b^2 = 4(k^2 - l^2)$, which cannot be equal to 2.
- Case 2: a and b are both odd, say $a = 2k + 1$ and $b = 2l + 1$ where $k, l \in \mathbb{Z}$. Then $a^2 - b^2 = 4(k^2 + k - l^2 - l)$, which cannot be equal to 2.
- Case 3: a is odd and b is even. Then a^2 is odd and b^2 is even. So $a^2 - b^2$ is odd and therefore cannot be equal to 2.
- Case 4: a is even and b is odd. Then a^2 is even and b^2 is odd. So $a^2 - b^2$ is odd and therefore cannot be equal to 2.

In each case we have $a^2 - b^2 \neq 2$ as desired.

2More generally, take any sets A and B such that neither is a subset of the other, and let $C = A \cap B$. Then $A \cap B \subseteq C$, but $A \not\subseteq C$ and $B \not\subseteq C$.