MATH 13 MIDTERM EXAM SOLUTIONS

WINTER 2014

Problem 1.

(a) For n = 1, 2, 3, ... define the inverval $A_n = [1/n, n]$. Rewrite the union of intervals $\bigcup_{n \in \mathbb{N}} A_n$ as an interval. For this problem you do not need to prove that your answer is correct.

 $(0,\infty)$.

(b) Give an example of sets A and B with the property that $\mathcal{P}(A) - \mathcal{P}(B) \not\subseteq \mathcal{P}(A-B)$, and show that your sets have this property. (\mathcal{P} means "power set.")

Take $A = \{1, 2, 3, 4\}$ and $B = \{1, 2\}$. Then the set $\{1, 3\}$ is in $\mathcal{P}(A) - \mathcal{P}(B)$ but not in $\mathcal{P}(A - B)$.

(c) Make a truth table for the compound statement $(P \lor Q) \implies R$.

¹More generally, take any set A with at least two elements and let B be any nonempty proper subset of A. Say $x \in B$ and $y \in A - B$. Then $\{x, y\}$ is in $\mathcal{P}(A) - \mathcal{P}(B)$ but not in $\mathcal{P}(A - B)$.

Problem 2. For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

- T $(P \Longrightarrow R) \lor (Q \Longrightarrow R)$ logically implies $(P \lor Q) \Longrightarrow R$.
- ① F For all a, b, c, d, if $\{a, b\} = \{c, d\}$ and a = c, then b = d.
- ① F For all sets A, B, C, D, and U, if $\{A, B, C, D\}$ is a partition of U, then so is $\{A \cup B, C \cup D\}$.

- T For all sets A and B, $(A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)$.
- T (F) $\sim \forall x \in S, P(x)$ is logically equivalent to $\forall x \in S, \sim P(x)$.
- T (F) $\emptyset \in \emptyset$.

- ① F $P \implies (\sim P \implies Q)$ is a tautology.
- ① F For all sets A and B, if $A \cap B = A$ then $A \subseteq B$.
- \bigcirc F $\sim (P \vee Q)$ is logically equivalent to $(\sim P) \wedge (\sim Q)$.

Problem 3. Let $x, y, z \in \mathbb{Z}$. Prove that the following sum of absolute values is even: |x - y| + |y - z| + |z - x|.

Proof. Without loss of generality we may assume $x \ge y \ge z$. Then $x - y \ge 0$, $y - z \ge 0$, and $z - x \le 0$, so

$$|x-y| + |y-z| + |z-x| = (x-y) + (y-z) + (-(z-x)) = 2(x-z),$$

which is even. \Box

Alternative proof. We consider four cases.

- Case 1: x, y, and z are all even. Then |x-y|, |y-z|, and |z-x| are all even, so their sum is even.
- Case 2: Exactly two of x, y, and z are even. Without loss of generality we may assume that x and y are even and that z is odd. Then |x y| is even, and |y z| and |z x| are odd. So their sum is even.
- Case 3: Exactly one of x, y, and z is even. Without loss of generality we may assume that x is even and that y and z are odd. Then |x-y| and |z-x| are odd and |y-z| is even. So their sum is even.
- Case 4: x, y, and z are all odd. Then |x-y|, |y-z|, and |z-x| are all even, so their sum is even.

In each case, |x-y| + |y-z| + |z-x| is even.

Problem 4. Let $x \in \mathbb{Z}$. Prove that if $3 \nmid (x^2 + 2)$, then $3 \mid x$.

Proof. We prove the contrapositive. Assume that $3 \nmid x$. There are two cases to consider.

- Case 1: $x \equiv 1 \pmod{3}$. Then $x^2 \equiv 1^2 \equiv 1 \pmod{3}$, so $x^2 + 2 \equiv 1 + 2 \equiv 0 \pmod{3}$.
- Case 2: $x \equiv 2 \pmod{3}$. Then $x^2 \equiv 2^2 \equiv 1 \pmod{3}$, so $x^2 + 2 \equiv 1 + 2 \equiv 0 \pmod{3}$.

In each case we have $x^2 + 2 \equiv 0 \pmod{3}$, meaning that $3 \mid (x^2 + 2)$ as desired.

Problem 5. PROVE or DISPROVE the following statement:

For all sets A, B, and C,

$$(A \subseteq C \lor B \subseteq C) \iff (A \cap B \subseteq C).$$

Solution. We disprove the statement.

Let
$$A = \{1\}$$
, $B = \{2\}$, and $C = \emptyset$. Then $A \cap B = \emptyset \subseteq C$, but $A \not\subseteq C$ and $B \not\subseteq C$.

Problem 6. PROVE or DISPROVE the following statement:

There are $a, b \in \mathbb{Z}$ such that

$$a^2 - b^2 = 2.$$

Solution. We disprove the statement.

Let $a, b \in \mathbb{Z}$. Without loss of generality we may assume that $a, b \geq 0$ (because a^2 and b^2 do not depend on the signs of a and b.)

- Case 1: $a \le b$. Then $a^2 b^2 \le 0$, so $a^2 b^2 \ne 2$. Case 2: a = b + 1. Then $a^2 b^2 = (b + 1)^2 b^2 = 2b + 1$, which cannot be equal to 2.
- Case 3: $a \ge b + 2$. Then $a^2 b^2 = (b + 2)^2 b^2 = 4b + 4$, which is greater than 2.

In each case we have $a^2 - b^2 \neq 2$.

Solution (Alternative 1). We disprove the statement.

Let $a, b \in \mathbb{Z}$. We have $a^2 - b^2 = (a+b)(a-b)$. Assume to the contrary that this is equal to 2. The only ways to factor 2 are as $1 \cdot 2$, $2 \cdot 1$, $-1 \cdot -2$, and $-2 \cdot -1$. So 2 can only be factored as a product of consecutive integers. But a + b and a - b differ by 2b, an even number, so they are not consecutive and we have a contradiction.

Solution (Alternative 2). We disprove the statement.

Let $a, b \in \mathbb{Z}$. We consider three cases.

- Case 1: a and b are both even, say a = 2k and b = 2l where $k, l \in \mathbb{Z}$. Then $a^2 - b^2 = 4(k^2 - l^2)$, which cannot be equal to 2.
- Case 2: a and b are both odd, say a = 2k + 1 and b = 2l + 1 where $k, l \in \mathbb{Z}$. Then $a^{2}-b^{2}=4(k^{2}+k-l^{2}-l)$, which cannot be equal to 2.
- Case 3: a is odd and b is even. Then a^2 is odd and b^2 is even. So $a^2 b^2$ is odd and therefore cannot be equal to 2.
- Case 4: a is even and b is odd. Then a^2 is even and b^2 is odd. So $a^2 b^2$ is odd and therefore cannot be equal to 2.

In each case we have $a^2 - b^2 \neq 2$ as desired.

²More generally, take any sets A and B such that neither is a subset of the other, and let $C = A \cap B$. Then $A \cap B \subseteq C$, but $A \not\subseteq C$ and $B \not\subseteq C$.