MATH 13 MIDTERM EXAM

WINTER 2014

Student name:

Student ID number:

INSTRUCTIONS

• Books, notes, and electronic devices may NOT be used. These items must be kept in a closed backpack or otherwise hidden from view during the exam.
• Cheating in any form may result in an F grade for the course as well as administrative sanctions.
• The time remaining will be written on the board periodically.
• You may hand in your exam and leave early, but please do not do this during the last 5 minutes of the exam period because it may disturb other students.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/ 9</td>
</tr>
<tr>
<td>2</td>
<td>/ 9</td>
</tr>
<tr>
<td>3</td>
<td>/ 6</td>
</tr>
<tr>
<td>4</td>
<td>/ 6</td>
</tr>
<tr>
<td>5</td>
<td>/ 6</td>
</tr>
<tr>
<td>6</td>
<td>/ 6</td>
</tr>
<tr>
<td>Total</td>
<td>/ 42</td>
</tr>
</tbody>
</table>
Problem 1 (9 points).

(a) For \(n = 1, 2, 3, \ldots \) define the interval \(A_n = [1/n, n] \). Rewrite the union of intervals \(\bigcup_{n \in \mathbb{N}} A_n \) as an interval. For this problem you do not need to prove that your answer is correct.

(b) Give an example of sets \(A \) and \(B \) with the property that \(\mathcal{P}(A) - \mathcal{P}(B) \nsubseteq \mathcal{P}(A - B) \), and show that your sets have this property. (\(\mathcal{P} \) means “power set.”)

(c) Make a truth table for the compound statement \((P \lor Q) \implies R\).
Problem 2 (9 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

T F \((P \Rightarrow R) \lor (Q \Rightarrow R) \) logically implies \((P \lor Q) \Rightarrow R \).

T F For all \(a, b, c, d \), if \(\{a, b\} = \{c, d\} \) and \(a = c \), then \(b = d \).

T F For all sets \(A, B, C, D, \) and \(U \), if \(\{A, B, C, D\} \) is a partition of \(U \), then so is \(\{A \cup B, C \cup D\} \).

T F For all sets \(A \) and \(B \), \((A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)\).

T F \(\sim \forall x \in S, P(x) \) is logically equivalent to \(\forall x \in S, \sim P(x) \).

T F \(\emptyset \in \emptyset \).

T F \(P \Rightarrow (\sim P \Rightarrow Q) \) is a tautology.

T F For all sets \(A \) and \(B \), if \(A \cap B = A \) then \(A \subseteq B \).

T F \(\sim(P \lor Q) \) is logically equivalent to \((\sim P) \land (\sim Q) \).
Problem 3 (6 points). Let \(x, y, z \in \mathbb{Z} \). Prove that the following sum of absolute values is even: \(|x - y| + |y - z| + |z - x|\).

Problem 4 (6 points). Let \(x \in \mathbb{Z} \). Prove that if \(3 \nmid (x^2 + 2) \), then \(3 \mid x \).
Problem 5 (6 points). PROVE or DISPROVE the following statement:
For all sets A, B, and C,

$$(A \subseteq C \lor B \subseteq C) \iff (A \cap B \subseteq C).$$