MATH 161 SAMPLE MIDTERM EXAM SOLUTIONS

2014 MAY 5

Problem 1 (3 points). State, but do not prove, the SAS (side-angle-side) similarity theorem. Solution. For any two triangles $\triangle ABC$ and $\triangle A'B'C'$, if $\angle A \cong \angle A'$ and AB/A'B' = AC/A'C', then $\triangle ABC \sim \triangle A'B'C'$.

Problem 2 (5 points). Let ABCD be a quadrilateral and let ℓ be a line that does not pass through any of the vertices A, B, C, or D. Prove that if ℓ intersects three sides of ABCD, then it also intersects the fourth side of ABCD.

Solution. Without loss of generality, we may assume that ℓ intersects the three sides \overline{AB} , \overline{BC} , and \overline{CD} . Then A and B are on opposite sides of ℓ and B and C are on opposite sides of ℓ , so (by the plane separation property) A and C are on the same side of ℓ . Because C and D are on opposite sides of ℓ and A and C are on the same side of ℓ , we have that A and D are on opposite sides of ℓ (again by the plane separation property.) In other words, the line ℓ intersects \overline{AD} , which is the fourth side of the quadrilateral ABCD.

Solution (alternative). Without loss of generality, we may assume that ℓ intersects the three sides \overline{AB} , \overline{BC} , and \overline{CD} . Then ℓ intersects two sides of $\triangle ABC$, so by Pasch's axiom it does not intersect the third side \overline{AC} . Now consider $\triangle ACD$: the line ℓ intersects the side \overline{CD} and does not intersect the side \overline{AC} , so again by Pasch's axiom it must intersect the side \overline{AD} . We have shown that the line ℓ intersects the fourth side \overline{AD} of the quadrilateral ABCD, as desired.

<u>Problem 3 (5 points)</u>. Given a triangle $\triangle ABC$, let D, E, and F be the midpoints of \overline{AB} , \overline{AC} , and \overline{BC} respectively. Show that the four smaller triangles $\triangle ADE$, $\triangle DBF$, $\triangle FED$, and $\triangle EFC$ are all congruent to one another.

Solution. By SAS similarity, $\triangle ABC \sim \triangle ADE$ with similarity constant 2, so DE = BC/2. Therefore DE = BF = FC. An analogous argument shows that DF = AE = EC and EF = AD = DB. Therefore the four smaller triangles are congruent to one another by SSS congruence. (You may want to draw a diagram to see this.)

Problem 4 (5 points). Let $\triangle ABC$ and $\triangle A'B'C'$ be triangles such that $\triangle ABC \sim \triangle A'B'C'$ with similarity constant k (so A'B' = kAB, etc.) Prove that $\text{Area}(\triangle A'B'C') = k^2 \text{Area}(\triangle ABC)$. You may use the usual formula for the area of a triangle.

Solution. Consider the sides \overline{AB} and $\overline{A'B'}$ as the bases of $\triangle ABC$ and $\triangle A'B'C'$ respectively. Let D and D' denote the unique points on the lines \overline{AB} and $\overline{A'B'}$ respectively such that $\overline{AB} \perp \overline{CD}$ and $\overline{A'B'} \perp \overline{C'D'}$. By definition, CD is the height of $\triangle ABC$ and C'D' is the height of $\triangle A'B'C'$. Now $\triangle ADC \sim \triangle A'D'C'$ by AA similarity (using the congruent angles at A and A' and the right angles at D and D) and we have C'D'/CD = A'C'/AC = k. In other words, the height of $\triangle A'B'C'$ is k times the height of $\triangle ABC$. Because the base of $\triangle A'B'C'$ is k times the base of $\triangle ABC$, the claim follows by the "one-half base times height" formula for the area of a triangle.

Problem 5 (5 points). Prove that $\cos(30^\circ) = \sqrt{3}/2$.

Solution. We begin by constructing a right triangle containing a 30° angle. First, take an equilateral triangle $\triangle ABC$ with sides of length 1. Its angles are equal to one another (because $\triangle ABC \cong \triangle BCA$ by SSS congruence) and they sum to 180°, so they are all 60°. Let D be the midpoint of \overline{AB} . Then $\triangle ADC \cong \triangle BDC$ by SSS congruence, so in particular we have $\angle ADC \cong \angle BDC$ and $\angle ACD \cong \angle BCD$. Therefore $\angle ADC$ and $\angle BDC$ are both right angles and $\angle ACD$ and $\angle BCD$ are both 30°. By the definition of cosine we have $\cos(30^\circ) = DC/AC$. Finally, we have AC = 1 and $DC = \sqrt{(AC)^2 - (AD)^2} = \sqrt{1 - (1/2)^2} = \sqrt{3}/2$ by Pythagoras's theorem.

Problem 6 (5 points). Let O_1 , A and O_2 be collinear points with A between O_1 and O_2 . Let c_1 be the circle with center O_1 and radius O_1A , and let c_2 be the circle with center O_2 and radius O_2A . Prove that the circles c_1 and c_2 do not intersect at any point other than A.

Solution. Suppose toward a contradiction that c_1 and c_2 intersect at some other point B. Because A and B lie on a circle with center O_1 , we have $\overline{O_1A} \cong \overline{O_1B}$, so the triangle O_1AB is isosceles. Therefore the base angles of this triangle at A and B are congruent. By an analogous argument the triangle O_2AB is isosceles, so its base angles at A and B are also congruent. Because A lies on the segment $\overline{O_1O_2}$, the angles O_1AB and O_2AB are supplementary. Therefore the angles O_1BA and O_2BA are also supplementary, so B lies on the segment $\overline{O_1O_2}$ also. Because $\overline{O_1A} = \overline{O_1B}$ this means that A = B, a contradiction.