Covering properties of derived models

Trevor Wilson

University of California, Irvine

ASL North American Annual Meeting
UIUC
March 26, 2015

Outline

Background

Weak covering for *L*Derived models

Covering for derived models

...at an inaccessible limit of Woodin cardinals ...at a weakly compact limit of Woodin cardinals

Questions

Theorem (Jensen)

- ▶ If κ is a singular cardinal and $(\kappa^+)^L < \kappa^+$, then 0^{\sharp} exists.
- ▶ If $\kappa \ge \aleph_2$ is regular and cf $((\kappa^+)^L) < \kappa$, then 0^{\sharp} exists.

Theorem (Kunen)

If κ is weakly compact and $(\kappa^+)^L < \kappa^+$, then 0^\sharp exists.

Remark

In the regular and weakly compact cases we will get parallel results with derived models in place of L and strong axioms of determinacy in place of 0^{\sharp} .

Theorem (Woodin)

The following theories are equiconsistent:

- 1. ZFC + "there are infinitely many Woodin cardinals"
- 2. ZF + AD.

More specifically:

Theorem (Woodin)

Let κ be a limit of Woodin cardinals, let G be a V-generic filter over $\operatorname{Col}(\omega, <\kappa)$, and define $\mathbb{R}_G^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \mid \alpha]}$. Then $L(\mathbb{R}_G^*) \models \operatorname{AD}$.

Remark

- ▶ The existence of infinitely many Woodin cardinals does not imply AD in $L(\mathbb{R})$ of V itself.
- For example, in the least mouse with infinitely many Woodin cardinals, $AD^{L(\mathbb{R})}$ fails.

- We can consider models of AD extending $L(\mathbb{R}_G^*)$, such as derived models.
- ▶ Larger derived models can satisfy stronger determinacy axioms, for example $AD_{\mathbb{R}}$, which cannot hold in $L(\mathbb{R}_G^*)$.

Definition

 $AD_{\mathbb{R}}$ (a strengthening of AD) says that two-player games on \mathbb{R} (instead of \mathbb{N}) of length ω are determined.

- ▶ $AD_{\mathbb{R}}$ has higher consistency strength than AD.
- What we are really interested in is the axiom AD + "every set of reals is Suslin,"
 - which is equivalent to $AD_{\mathbb{R}}$ modulo ZF + DC. (Woodin)
- ▶ A set is Suslin if it is the projection of a tree on $\omega \times \text{Ord}$ (Just like analytic sets are projections of trees on $\omega \times \omega$.)

Let κ be a limit of Woodin cardinals and let G be a V-generic filter over $Col(\omega, <\kappa)$.

Definition

The derived model of V at κ by G, denoted by $D(V, \kappa, G)$, is characterized by the following properties.

- 1. $L(\mathbb{R}_G^*) \subset D(V, \kappa, G) \subset V(\mathbb{R}_G^*)$
- 2. $D(V, \kappa, G) \models AD^+ + V = L(\mathcal{P}(\mathbb{R}))$
- 3. It is ⊂-maximal subject to 1 and 2 (exists by Woodin.)

Remark

 AD^+ is a strengthening of AD that holds in $L(\mathbb{R}_G^*)$ (and in all known models of AD, so let's ignore the "+".)

Theorem (W.)

Let κ be an inaccessible limit of Woodin cardinals. Let G be a V-generic filter over $Col(\omega, <\kappa)$. Then

$$cf(\Theta^{D(V,\kappa,G)}) \ge \kappa.$$

 $(\Theta$ is the least ordinal that is not a surjective image of \mathbb{R} .)

- ▶ $\Theta^{D(V,\kappa,G)}$ is analogous to $(\kappa^+)^L$ in weak covering for L.
- ▶ $\Theta^{D(V,\kappa,G)}$ does not depend on G.
- If κ is inaccessible, then $\mathbb{R}^{D(V,\kappa,G)} = \mathbb{R}_G^* = \mathbb{R}^{V[G]}$.

To restate using an equivalent version of the conclusion $cf(\Theta^{D(V,\kappa,G)}) \ge \kappa$:

Corollary

Let κ be an inaccessible limit of Woodin cardinals. Let G be a V-generic filter over $Col(\omega, <\kappa)$. Then:

In V[G], every countable sequence of sets of reals in $D(V, \kappa, G)$ is in $D(V, \kappa, G)$.

Remark

In other words, weak covering for $D(V, \kappa, G)$ is not so weak.

If $D(V, \kappa, G) \models AD_{\mathbb{R}}$ (this case was already known):

- ▶ The sets of reals of $D(V, \kappa, G)$ are exactly the Suslin co-Suslin sets of reals in $V(\mathbb{R}_G^*)$. (Woodin)
- (Think of Suslin co-Suslin as a generalization of Borel.)
- ▶ Every countable sequence of Suslin co-Suslin sets is coded by a Suslin co-Suslin set, using DC in $V(\mathbb{R}_G^*)$.

If
$$D(V, \kappa, G) \models \neg AD_{\mathbb{R}}$$
:

- ▶ Not all sets of reals in $D(V, \kappa, G)$ are Suslin in $V(\mathbb{R}_G^*)$.
- We show that if covering fails, then they are.
- ► The work lies in constructing Suslin representations from failures of covering. (We omit the details in this talk.)

If $cf(\Theta^{D(V,\kappa,G)}) \ge \kappa$, then either

- 1. $\Theta^{D(V,\kappa,G)}=\kappa^+$, or
- 2. $cf(\Theta^{D(V,\kappa,G)}) = \kappa$.

- ▶ If $AD_{\mathbb{R}}$ holds in $D(V, \kappa, G)$, then Case 2 holds.
- ▶ If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, both cases are possible.
- Case 1 should hold in the least mouse with an inaccessible limit of Woodin cardinals (I think.)
- ▶ Can get Case 2 from Case 1 by forcing with $Col(\kappa, \kappa^+)$.

Theorem (W.)

Let κ be a weakly compact limit of Woodin cardinals. Let G be a V-generic filter over $\operatorname{Col}(\omega, <\kappa)$. If $\operatorname{AD}_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then

$$\Theta^{D(V,\kappa,G)} = \kappa^+.$$

Remark

The hypothesis is consistent:

- ightharpoonup AD $_{\mathbb{R}}$ has higher consistency strength than the existence of a weakly compact limit of Woodin cardinals.
- Also, the hypothesis holds in the least mouse with a weakly compact limit of Woodin cardinals.

We can force a failure of covering for the derived model. This does not typically preserve weak compactness. But:

Corollary

If κ is a $\operatorname{Col}(\kappa, \kappa^+)$ -indestructibly weakly compact limit of Woodin cardinals and G is a V-generic filter over $\operatorname{Col}(\omega, <\kappa)$, then $D(V, \kappa, G) \models \operatorname{AD}_{\mathbb{R}}$.

Remark

A better relative consistency result comes from Jensen–Schimmerling–Schindler–Steel, Stacking mice.

What if the limit κ of Woodin cardinals is not inaccessible (and is therefore singular)?

Question

Let κ be a singular limit of Woodin cardinals. If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then must $\Theta^{D(V, \kappa, G)} = \kappa^+$?

Remark

Failures of covering for derived models at singular cardinals can be obtained from forcing axioms.