Covering properties of derived models

Trevor Wilson

University of California, Irvine

June 16, 2015

Outline

Background

Weak covering for LDeterminacy in $L(\mathbb{R}_G^*)$ The derived model $D(V, \kappa, G)$ Weak covering for derived models?

Results

Inaccessible limits of Woodin cardinals Weakly compact limits of Woodin cardinals

Questions

Let L denote Gödel's constructible universe.

Weak covering

If 0^{\sharp} does not exist, then L is "close to V" in terms of cardinals and cofinalities:

- 1. If κ is a singular cardinal, then $(\kappa^+)^L = \kappa^+$. (Jensen)
- 2. If $\kappa \geq \aleph_2$ is regular, then $\operatorname{cf}((\kappa^+)^L) \geq \kappa$. (Jensen)
- 3. If κ is weakly compact, then $(\kappa^+)^L = \kappa^+$. (Kunen)

In cases (2) and (3), we can get parallel results with a model of determinacy (a derived model at κ) in place of L, and a strong axiom of determinacy (AD_R) in place of 0^{\sharp} .

Definition

The Axiom of Determinacy, AD, says that for every ω -length two-player game of perfect information on the integers, one of the two players has a winning strategy.

Theorem (Woodin)

The following theories are equiconsistent:

- 1. ZFC + "there are infinitely many Woodin cardinals"
- 2. ZF + AD.

We will need some details of the forward direction.

Theorem (Woodin)

Let κ be a limit of Woodin cardinals, let G be a V-generic filter over $Col(\omega, <\kappa)$, and define

$$\mathbb{R}_{G}^{*} = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}.$$

Then $L(\mathbb{R}_G^*) \models AD$.

Remark

From a slightly stronger hypothesis, Woodin obtained AD in the $L(\mathbb{R})$ of V itself.

For the rest of the talk:

- Fix a limit κ of Woodin cardinals
- ▶ Fix a *V*-generic filter $G \subset \text{Col}(\omega, <\kappa)$
- ▶ Define $\mathbb{R}_G^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \upharpoonright \alpha]}$.

Remark

If κ is regular (hence inaccessible) then

- $ightharpoonup \kappa = \omega_1^{V[G]}$, and
- $\blacktriangleright \mathbb{R}_G^* = \mathbb{R}^{V[G]}.$

Let's look for models of AD larger than $L(\mathbb{R}_G^*)$. First we consider a *symmetric model*:

Definition

$$V(\mathbb{R}_G^*) = \mathsf{HOD}_{V \cup \mathbb{R}_G^* \cup \{\mathbb{R}_G^*\}}^{V[G]}$$
.

Remark

Whether or not κ is regular, we have

$$\qquad \kappa = \omega_1^{V(\mathbb{R}_G^*)}.$$

$$ightharpoonup \mathbb{R}_G^* = \mathbb{R}^{V(\mathbb{R}_G^*)}$$
.

Remark

AC fails in $V(\mathbb{R}_G^*)$: we cannot choose a surjection $\omega \to \alpha$ for every $\alpha < \kappa$.

Remark

If κ is regular (hence inaccessible) in V, then in $V(\mathbb{R}_G^*)$ every set of reals is Lebesgue measurable and DC holds. (Solovay)

Remark

AD fails in $V(\mathbb{R}_G^*)$.

Theorem (Woodin)

In $V(\mathbb{R}_G^*)$, there is a largest (under \subset) pointclass Γ such that

$$L(\Gamma, \mathbb{R}_G^*) \models AD^+$$
.

 $(AD^+$ is a strengthening of AD that holds in $L(\mathbb{R}_G^*)$.

Definition

The derived model of V at κ by G is

$$D(V, \kappa, G) = L(\Gamma, \mathbb{R}_G^*)$$

for the largest pointclass Γ as above.

Remark

- ▶ The derived model $D(V, \kappa, G)$ can satisfy stronger determinacy axioms than $L(\mathbb{R}_G^*)$, such as $\mathsf{AD}_{\mathbb{R}}$.
- ▶ (Just as higher core models can satisfy stronger large cardinal axioms than L, such as the existence of 0^{\sharp} .)

Definition

 $\mathsf{AD}_\mathbb{R}$ is determinacy for games on \mathbb{R} (instead of \mathbb{N} .)

Recall that if 0^{\sharp} does not exist, then L is "close to V."

Question

If $AD_{\mathbb{R}}$ does not hold in the derived model $D(V, \kappa, G)$, then is $D(V, \kappa, G)$ "close to $V(\mathbb{R}_G^*)$ "?

Remark

- ▶ The relevant cardinalities and cofinalities are in the vicinity of κ and κ^+ .
- ▶ We could say "close to V" instead of "close to $V(\mathbb{R}_G^*)$ " because the correspondence between cardinals and cofinalities of V and $V(\mathbb{R}_G^*)$ is straightforward.

A caveat in formulating "close to V" for derived models:

- ▶ In $D(V, \kappa, G)$ there is a surjection $\mathbb{R}_G^* \to \omega_2$ (by AD, using the Moschovakis coding lemma.)
- ▶ In $V(\mathbb{R}_G^*)$ there is no surjection $\mathbb{R}_G^* o \omega_2$

Because κ is ω_1 in $D(V, \kappa, G)$ and $V(\mathbb{R}_G^*)$, it follows that:

$$(\kappa^+)^{D(V,\kappa,G)} < \kappa^+.$$

Remark

This also shows that $V(\mathbb{R}_G^*)$ does not satisfy AD.

So it seems $(\kappa^+)^{D(V,\kappa,G)}$ is not the relevant thing to look at.

Definition

 Θ is the least ordinal that is not a surjective image of $\mathbb R$ (*i.e.* the successor of $\mathbb R$ in the sense of surjections.)

Remark

- ▶ If AC holds, then $\Theta = \mathfrak{c}^+$.
- ▶ If AD holds, then Θ is inaccessible by the coding lemma (in particular $\Theta > \omega_2$).

Look at $\Theta^{D(V,\kappa,G)}$ instead of $(\kappa^+)^{D(V,\kappa,G)}$.

Remark

- \bullet $\Theta^{D(V,\kappa,G)} \leq \kappa^+$.
- ▶ If $AD_{\mathbb{R}}$ holds in $D(V, \kappa, G)$ then $\Theta^{D(V, \kappa, G)} < \kappa^+$. (Using the fact $\mathcal{P}(\mathbb{R})^{D(V, \kappa, G)} = \mathsf{Hom}_{G}^*$.)
- ▶ If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$ then in general we may have $\Theta^{D(V,\kappa,G)} < \kappa^+$ or $\Theta^{D(V,\kappa,G)} = \kappa^+$; in specific cases we will be able to say more.

Analogy:

$$\Theta^{D(V,\kappa,G)} \leftrightsquigarrow (\kappa^+)^L$$
 $AD_{\mathbb{R}}$ fails $\leftrightsquigarrow 0^{\sharp}$ does not exist

Theorem (W.)

Let κ be an inaccessible limit of Woodin cardinals.

Let G be a V-generic filter over $Col(\omega, <\kappa)$.

If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then $cf(\dot{\Theta}^{D(V,\kappa,G)}) \geq \kappa$.

Remark

An equivalent conclusion is that $D(V, \kappa, G)$ is closed under ω -sequences of sets of reals in $V(\mathbb{R}_G^*)$.

Remark

If $AD_{\mathbb{R}}$ holds in $D(V, \kappa, G)$ then $cf(\Theta^{D(V,\kappa,G)}) = \kappa$, but for trivial reasons.

Proof sketch:

- We want to show that $cf(\Theta^{D(V,\kappa,G)}) \ge \kappa$.
- ▶ If not, assume WLOG that $cf(\Theta^{D(V,\kappa,G)}) = \omega$ in V.
- ▶ Take hull $X \prec H_{\kappa^+}$ with $X \cap \kappa = \bar{\kappa} < \kappa$ and $X^{\omega} \subset X$.
- ▶ Consider $\pi: M \cong X$, the uncollapse map.
- ▶ Extend to $\hat{\pi}: M[\bar{G}] \to H_{\kappa^+}[G]$ where $\bar{G} = G \upharpoonright \bar{\kappa}$.
- ▶ Set $\bar{D} = D(M, \bar{\kappa}, \bar{G})$ and $D = D(H_{\kappa^+}, \kappa, G)$.
- $\hat{\pi}[\bar{D}]$ is Wadge-cofinal in D (cofinality is small.)

Proof sketch (continued):

- ▶ In $D(V, \kappa, G)$, if $AD_{\mathbb{R}}$ fails, then there is a Suslin set of reals p[T] whose complement is not Suslin.
- ▶ Assume WLOG that $T \in V$.
- ▶ Using that $\hat{\pi}[\bar{D}]$ is Wadge-cofinal in D, show the hull is T-full: every subset of $\mathbb{R}^*_{\bar{G}}$ in $L(T, \mathbb{R}^*_{\bar{G}})$ is in \bar{D} .
- ▶ Use T-fullness and $\hat{\pi}$ to get a tree T' in $V(\mathbb{R}_G^*)$ such that T and T' project to complements, a contradiction.

So if κ is an inaccessible limit of Woodin cardinals and $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$ then either

- 1. $\Theta^{D(V,\kappa,G)} = \kappa^+$, or
- 2. $cf(\Theta^{D(V,\kappa,G)}) = \kappa$.

Remark

Both cases are possible.

- ▶ Case 1 holds if κ is weakly compact (as we will see.)
- ▶ Can get case 2 from case 1 by forcing with $Col(\kappa, \kappa^+)$.

Theorem (W.)

Let κ be a weakly compact limit of Woodin cardinals. Let G be a V-generic filter over $\operatorname{Col}(\omega, <\kappa)$. If $\operatorname{AD}_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then $\Theta^{D(V, \kappa, G)} = \kappa^+$.

Remark

The hypothesis is consistent: $AD_{\mathbb{R}}$ has higher consistency strength than a weakly compact limit of Woodin cardinals.

We can force a failure of covering for the derived model. This does not typically preserve weak compactness. But:

Corollary

If κ is a $\operatorname{Col}(\kappa, \kappa^+)$ -indestructibly weakly compact limit of Woodin cardinals and G is a V-generic filter over $\operatorname{Col}(\omega, <\kappa)$, then $D(V, \kappa, G) \models \operatorname{AD}_{\mathbb{R}}$.

Remark

A better relative consistency result comes from Jensen–Schimmerling–Schindler–Steel, Stacking mice.

Can we get weak covering in the singular case?

Question

Let κ be a singular limit of Woodin cardinals. If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then must $\Theta^{D(V, \kappa, G)} = \kappa^+$?

This would result in incompactness:

Proposition (W.)

Let κ be a singular limit of Woodin cardinals.

If $\Theta^{D(V,\kappa,G)}=\kappa^+$, then \square_{κ}^* holds after some small forcing.

(The small forcing is only needed if $D(V, \kappa, G) \models LSA$; perhaps not even then.)

In the inaccessible case, where we do have weak covering, does this result in incompactness? (Note \square_{k}^{*} is trivial at an inaccessible.)

Question

Let κ be an inaccessible limit of Woodin cardinals. If $AD_{\mathbb{R}}$ fails in $D(V, \kappa, G)$, then

- ▶ In the case $cf(\Theta^{D(V,\lambda,G)}) = \kappa$, must $\square(\kappa)$ hold?
- ▶ In the case $\Theta^{D(V,\lambda,G)} = \kappa^+$, must $\square(\kappa^+)$ hold?

Recall that if $AD_{\mathbb{R}}$ holds, then we have $\Theta^{D(V,\kappa,G)} < \kappa^+$. Can we still get some kind of weak covering?

Question

Let κ be a limit of Woodin cardinals. Assume that

- ightharpoonup is singular, or
- κ is weakly compact.

Assume that $AD_{\mathbb{R}}$ holds in $D(V, \kappa, G)$ (and maybe that some stronger determinacy axiom fails.) Is the successor of $\Theta^{D(V,\kappa,G)}$ in $HOD^{D(V,\kappa,G)}$ equal to κ^+ ?